2508.06804v1 [cs.RO] 9 Aug 2025

arxXiv

D3P: Dynamic Denoising Diffusion Policy via Reinforcement Learning

Shu’ang Yu'?, Feng Gao', Yi Wu'3, Chao Yu!?, Yu Wang'f,

Tsinghua University 2Shanghai AI Laboratory 3Shanghai Qi Zhi Institute
 Corresponding Authors
{yuchao, yu-wang}@mail.tsinghua.edu.cn

(a) Motivation: Varying Action Criticality + (c) Method: Dynamic Denoising |
/ Diffusion Policy (D3P)

Iteratively denoise

/
Task: Transport

i | Noisy action i : Noise: €
[: Base Policy my o
| : Noiso Lovel | S
i] ide: @
; i .] Adaptor K,, Stride: k o
. i | Noise level |:
A\Crucial action i)
Moving arm Handover the object ~ Moving arm Jointly train K, my with RL
(b) Idea: Dynamic Denoising - (d) Results -
/" Action Criticality /
Denoising steps Denoising steps Denoising steps Comparable 2.2x

Performance Speed-up!

\ [
D3P
. . (Ours)

Avg. Success Rate Avg. Steps

Task progress Task progress Task progress
@ Performance) Speed @ Performance @) Speed @) Performance) Speed

Figure 1: An overview of Dynamic Denoising Diffusion Policy (D3P). (a) Motivation: Robotic tasks involve actions of varying
criticality. Crucial actions, like object handover, have a greater impact on task success than routine actions. (b) Idea: Instead
of using a fixed number of denoising steps, D3P dynamically allocates more denoising steps to crucial actions. (c) Method:
D3P uses a base policy mg and a lightweight adaptor K,,. The adaptor predicts the noise-level strides, which determines total
denoising steps for current action. (d) Results: D3P achieves a comparable success rate, while providing a 2.2x speed-up to a
normal fixed-step diffusion policy.

Abstract ber of denoising steps for each action. We jointly optimize

the adaptor and base diffusion policy via reinforcement learn-

Diffusion policies excel at learning complex action distribu- ing to balance task performance and inference efficiency.

tions for robotic visuomotor tasks, yet their iterative denois- On simulated tasks, D3P achieves an averaged 2.2x infer-

ing process poses a major bottleneck for real-time deploy- ence speed-up over baselines without degrading success. Fur-

ment. Existing acceleration methods apply a fixed number thermore, we demonstrate D3P’s effectiveness on a physical
of denoising steps per action, implicitly treating all actions robot, achieving a 1.9x acceleration over the baseline.

as equally important. However, our experiments reveal that
robotic tasks often contain a mix of crucial and routine ac-
tions, which differ in their impact on task success. Motivated Introduction
by this finding, we propose Dynamic Denoising Diffusion
Policy (D3P), a diffusion-based policy that adaptively allo-
cates denoising steps across actions at test time. D3P uses a
lightweight, state-aware adaptor to allocate the optimal num-

Diffusion policies have demonstrated remarkable promise in
robotic visuomotor tasks (Janner et al. 2022; Pearce et al.
2023; Chi et al. 2023; Ze et al. 2024; Ma et al. 2024). By
casting action generation as a conditional denoising diffu-
Copyright © 2026, Association for the Advancement of Artificial sion process, they naturally model the full, often highly mul-
Intelligence (www.aaai.org). All rights reserved. timodal distribution of feasible actions while retaining stable

https://arxiv.org/abs/2508.06804v1

optimization dynamics (Chi et al. 2023). Concretely, action
sampling integrates the reverse-time stochastic differential
equation (SDE) that refines Gaussian noise into clean ac-
tions, following Ho, Jain, and Abbeel (2020) and Song et al.
(2020). This procedure entails dozens of denoising steps,
so diffusion policies typically run more slowly at inference
than one-shot generators based on GANs (Goodfellow et al.
2020), VAEs (Kingma, Welling et al. 2013), or autoregres-
sive models (Shafiullah et al. 2022; Zhao et al. 2023), which
limits their deployment in real-time control.

To address these challenges, previous work has sought to
accelerate inference through various strategies, such as re-
formulating the process as an ordinary differential equation
(ODE) to allow fewer sampling steps (Song, Meng, and Er-
mon 2020; Lu et al. 2022a,b), distilling the policy into a
single-step model (Prasad et al. 2024; Wang et al. 2024b),
or employing streaming techniques that use action history
as a prior (Hgeg, Du, and Egeland 2024; Chen et al. 2025).
These acceleration methods for diffusion policies typically
use a uniform number of denoising steps per action, which
implicitly assumes that all actions are equally important for
task success.

However, our analysis of robotic tasks provides evidence
that contradicts this assumption. We observe a stark non-
uniformity in action criticality: task executions typically
consist of pivotal crucial actions that largely determine
success, and more forgiving routine actions with only a
marginal impact. For instance, in a Transport task, the
precise moment of object handover is crucial, whereas the
arm movements before and after have less impact on task
success. Treating all actions uniformly, therefore, incurs un-
necessary computational overhead and restricts the ability to
balance decision quality with inference efficiency. This in-
sight motivates a new design principle: Allocate denoising
steps adaptively: spend more computation on crucial ac-
tions, and less on routine ones—to balance precision and
efficiency.

In this paper, we propose Dynamic Denoising Diffusion
Policy (D3P), a diffusion policy that dynamically adjusts the
number of denoising steps during task execution. The D3P
architecture consists of two components: a standard noise
predicting network that serves as the base diffusion policy,
and a lightweight adaptor (Fig. 1). The adaptor is designed
to predict the noise-level strides based on the current ob-
servation, which eventually adapts the number of denoising
steps for the current action. We mathematically formulate
the dynamic denoising problem as a two-layer partially ob-
servable Markov decision process (POMDP). Then we use
reinforcement learning (RL) with this two-layer POMDP to
jointly train both the base diffusion policy and the adaptor.
Specifically, a base policy is fine-tuned with DPPO (Ren
et al. 2024) to maximize task success. Concurrently, the
lightweight adaptor is trained from scratch with PPO (Schul-
man et al. 2017), where its reward function incentivizes
minimizing denoising steps without compromising perfor-
mance. A key challenge in this joint training process is to
balance the contradictory objectives of task performance and
inference efficiency. To address this, we introduce a three-
stage training strategy that ensures stable convergence and

robust performance.

We evaluate D3P on a range of simulated manipulation
tasks. Using the same amount of training data, D3P achieves
an average 2.2x inference speed-up over baseline methods
while maintaining comparable performance. These results
demonstrate that D3P effectively addresses the trade-off be-
tween performance and efficiency. Furthermore, we deploy
D3P on the physical robot. It achieves a 1.9 x acceleration in
inference speed against a normal fixed-step diffusion policy.
Overall, our main contributions are as follows:

1. Through an empirical study, we reveal that different ac-
tions contribute unequally to manipulation tasks. There
exist some crucial actions significantly influencing task
completion.

2. Building on this observation, we propose Dynamic
Denoising Diffusion Policy (D3P). Trained via RL, D3P
features a noise-predicting network as the base diffusion
policy and an adaptor to dynamically adjust its denoising
steps during task execution.

3. We conduct experiments in eight simulated manipulation
tasks, demonstrating that D3P achieves the best perfor-
mance with an averaged 2.2 x speed-up over baselines.

4. We demonstrate that D3P can be successfully deployed
on a physical robot. It achieves a 1.9x acceleration
against a standard fixed-step diffusion policy.

Preliminaries

Partially Observable Markov Decision Process
(POMDP) We formulate the robot environment
within the framework of a partially observable Markov
decision Process (POMDP), defined by the tuple
Menv = (Senv, Aeny, Oenvs Phiteny, Penv, Renv).
Here, Sgnv, Agpnv, and Ogpny are the state, action, and
observation space separately. The process begins with
an initial state sy ~ P env. At each environment
timestep t, an agent receives an observation o; € Ogny,
and takes an action a; € Agny according to a policy
m(a; | o). The environment responds by transitioning to
a new state s;11 ~ Penv(Sie1 | S¢,a:) and providing

a reward 7, = Rgnv(St,a:). The objective in RL is to

learn a policy 7 that maximizes the expected return,
T—1 -t

Ery [Je(st,ae)] = Ery [> 2, Venv?r | St.a¢|, where

~venv € (0,1) is a discount factor and T is the the episode
horizon.

Diffusion Models Denoising diffusion probabilistic mod-
els (DDPMs) (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020) frame sample generation as an iterative de-
noising procedure, reversing a length-N diffusion chain
{x'}), where 20 is a clean sample, 2V ~ A(0,1) is pure
Gaussian noise, and N is the number of denoising steps. The
denoising is parameterized by a neural network, eg(z?,1),
trained to predict the noise component within a noisy sam-
ple x® at noise-level i. At inference, this process starts with
a sample of pure noise ="V and progressively refines it over
N steps, generating a clean sample z°.

Despite great performance, inference in DDPMs is slow
because it must execute all N reverse steps. Denoising

(a) Square

13.63

A Crucial

A Crucial
3.95

Predicted return
From Dy (0., a;)

.58
1
1
[l |
! ~Time to Add Pertutbation
N \

. , i

Moving Grasping Moving Aligning Done

V)N NN |

(b) Transport
Return w/o disturbance 24.61

A Crucial
3.39

Predicted return
From Dy (0., a;)

1
1
124.61
1
1
1

! 1
Time toAdd Perturbation
-

\

Handover

Done

Gras;)ing Moving MO\;ing

Figure 2: Visualizing Action Criticality via Perturbed Returns. The plots show the predicted perturbed return from
Do, ay) at different time of the task. A lower return indicates the action more crucial, as a perturbation is more likely to

lead to task failure.

diffusion implicit models (DDIMs) (Song, Meng, and Er-
mon 2020) accelerate sampling by replacing the stochas-
tic reverse process with a deterministic mapping that allows
larger strides in the noise schedule. Using the same training
loss as DDPMs, DDIMs traverse only a sparse set of noise
levels 79 > 71 > -+ > 7¢ = 0 where S < N. At a given
level i, the sampler can skip k£ > 1 noise-levels and go di-
rectly to a less—noisy point 2°~*:

l’iik NN(M(xiveiai7k)a 770121)’ (1)

where o; comes from the predefined schedule. Setting n = 0
removes the stochastic term, making the process fully deter-
ministic and much faster for inference

Diffusion Policies Diffusion policy (DP) (Chi et al.
2023) treats a diffusion model as the control policy mg.
To preserve temporal consistency, DP predicts an action
chunk X; = {a4,...,a;y7,—1} conditioned on the current
observation o;. With the DDIM sampler, the denoising
update at noise level i is

th;l NN(M (Xti7€9(Xtia0tai)77;’k)) T]UiQI) ’ 2)

with k the stride. This iterative procedure forms a POMDP
Mbpn = (Spn; AbN, ObN, Prit,oN; Pon, Ron). This pro-
cess starts with a state of pure noise X;¥ ~ A(0,I) and
terminates at ¢ = 0 to produce the final action chunk.

Empirical Study: Identifying Crucial Actions

We conduct an empirical study to validate that not all ac-
tions in a task are equally important. An action is deemed
crucial if a disturbance on it significantly degrades task per-
formance. Otherwise, it is considered routine.

Experiment Design We start from a pre-trained expert
policy Texpere that achieves over 90% success in the en-
vironment MEgny. At a randomly selected timestep ¢ €
{0,...,T — 1} we add Gaussian noise ¢ to the expert
action aq, yielding a perturbed action a} = a; + &.
The episode then resumes under Texperi. The perturbation’s
impact is measured by the episode return, J(s¢,a}) =

[eppen [Zf:o VT | st,a;} . A low J signals that the

original a; was crucial. We fit a lightweight predictor D :
Ognv X Apnv — R that predicts J from the unperturbed
pair (o, a;). More implementation details of our empirical
study appear in Appendix A.

Key Findings Fig. 2 plots Dy’s predicted return on the
Square and Transport tasks from Robomimic (Man-
dlekar et al. 2021). The results demonstrate that the
criticality of actions throughout a task is highly non-
uniform. For Square, fine interactions, such as grasping
the block and aligning it with the peg, receive the lowest
predicted returns (5.04, 3.95), marking them as crucial.
Whereas broad arm motions score higher (7.58, 8.56) and
are routine. After completion, the return peaks at 13.63
because later actions no longer influence success. For
Transport, grasping the hammer (3.39) and the bimanual
hand-over (3.69) dominate task success, while transit mo-
tions are routine. Overall, crucial actions are concentrated in
direct physical interactions, such as grasping and handover,
while broader movements have a relatively minor impact
on the results. This observation motivates our approach:
adaptively allocating denoising steps to different actions,
focusing more capacity on the crucial actions.

Method

In this section, we introduce Dynamic Denoising Diffusion
Policy (D3P), a method designed to dynamically adjust the
number of denoising steps during task execution. D3P uti-
lizes the noise-level stride scheme in DDIM solver (Song,
Meng, and Ermon 2020), and augments a base diffusion pol-
icy my with an adaptor K, trained to pick strides, as shown
in Fig. 1(c). The adaptor observes (o;, X;) and outputs a
stride: large strides skip more noise levels to speed up rou-
tine actions, while small strides keep precise denoising for
crucial actions. We frame adaptive denoising as a two-layer
POMDP and train the base policy my and adaptor K, jointly
with RL. During the training, 7y is fine-tuned to maximize
task reward, while K, learns to cut denoising steps without
degrading success. A three-stage training strategy is used
to stabilize training. The full algorithm is summarized in
Alg. 1.

SE0,1)

Ag(o,N-1) AgonN-1)| 11

Ag(1,i)

OState in Mgny OState in Mpn D State in M agz: Action from Base Policy k;z: Action from Adaptor

Figure 3: We formulate the dynamic denoising problem as a two-layer POMDP, where a denoising process (Mpy) is nested
within the environment (Mgnv). At each step, the adaptor K, predicts the noise-level strides. The base diffusion policy and

the adaptor are jointly updated via RL.

Problem Formulation

Following Psenka et al. (2023); Ren et al. (2024), we de-
fine a two-layer POMDP M = (S, A, O, Py, P, R) that
nests the denoising process Mpy inside the environment
Megny (Fig. 3). In this two-layer PODMP M, we denote
a time index as ¢(¢,i) = tN + (N — i — 1), where ¢t is
the environment step and ¢ € [0, N] is the index of noise
level. The states and observations in M are all tuples, de-
noted as 5; = (s, X}), 07 = (04, X}), with s; € Sgny and
X/ € Spn. An episode starts at £(0, N) with 550, x) ~ Phits
and P, is defined as

Pt = (Pritenv, PinitpN) - 3

At each time step ¢, the action tuple (ag, k7) is generated by
the base policy 7y and the adaptor K, following Eq. (4),
where | -] indicates rounding down.

kie.i) ~ Kok | 07), ji = max (i — kg0, 0)
ag ~ mo(ag | 07,9) =N (u(X/, €9 (07, 1), i, kz), no; I) .
“

Eq. (4) indicates that K, predicts the noise-level strides kz
to further control the total denoising steps. The 7 is set to 1
during training, making the Gaussian likelihood of 7y com-
putable, and is set to 0 when inference. After taking actions,
M makes transition following Eq. (5).

— (65t76af) I .7 > 07 (5)
STt ~
t“ (Penv(se41 | 56, X7), Paiton) 5 4 = 0.

In Eq. (5), j > O signifies an incomplete denoising pro-
cess, and both the environment state s; and observastion o;
remain unchanged. When j = 0, the denoising process con-
cludes and the resulting action is executed in the environ-
ment. Subsequently, Mgny transitions to a new state accord-
ing to PNy, and a new pure noise, X ﬁl, is resampled from
Gaussian distribution.

Dynamic Denoising

Following the problem formulation, we jointly train g and
K, on the same batch of rollout data.

To fine-tune the base policy, we apply DPPO (Ren et al.
2024) to optimize 7y and its value critic Vg on the dynamic-
denoising POMDP M. The critic Vg (0;), conditioned on
the environment observation oy, later serves as a proxy for
task performance when training the adaptor.

The adaptor aims to reduce the total denoising steps with-
out degrading performance. The most direct performance
signal is the binary success flag r; € {0, 1}, yet its sparsity
and high variance impede stable learning. Instead, we em-
ploy the advantage of each state—action pair in Mgyy as a
dense, low-variance, but slightly biased metric, computed as

Ao (X}, 00) = Jny (56, X7) = Vo(or), (6)
where J;, (s, X}) is the discounted return defined in the

Preliminaries. A larger Ap indicates that the fully denoised
action X7 is beneficial for future returns.

To encourage shorter denoising chains, we introduce a
discount factor v, € (0,1) that penalizes longer denoising
process. Balancing task performance against computational
cost, we define the reward for adaptor as

0 ,3>0
P = § @ Ao (X7, 00) A i—g @
+B st Py;tpt 7
where o and 3 are weighting coefficients, sgn, is the sign of

the advantage Ag(X?, 0;), and stp, denotes the total denois-
ing steps for generating the clean action X}. This formula-
tion rewards advantageous actions and successful episodes
while exponentially penalizing long denoising sequences.

We update K, with PPO (Schulman et al. 2017), mini-
mizing the clipped PPO loss in Eq. (8).

—LMP (W) = _EKwo]d [min (p(w)/lwold(kg, 07),
clip (p(w), 1 = €atps 1+ €etp) Au (R, 07))|

Here, p(w) = % is the probability ratio between
Wold \ V1t

the current and old adaptor. The advantage A, is computed

using Generalized Advantage Estimation (GAE) (Schulman

et al. 2015) based on the reward 7 ;.

®)

Algorithm 1: Dynamic Denoising Diffusion Policy (D3P)

1: Input: Pretrained base policy 7y, dynamic denoising environment M, discount factors ygnv, Vs, environment horizon T,
max denoise steps N, warm-up denoising steps ¢, update epochs e, ey, stage threshold (y, (o.

while Average 7, port < (1 do

while not converged do
Reset environment to £(0, N) as Eq. (3)
while t < T do

WX N AR

,_
e

12: Set ri 7 as Eq. (7), using /1(_) and r, 7.
13: for epoch =0,1,...,e — 1 do

Initialize: Adaptor K, with mean of ¢, empty buffer B .

> Stage 1: Warm-up

Warm-up 7g using DPPO (Ren et al. 2024) with fixed denoising steps ¢

> Stage 2: Joint training

> Rollout data

Sample action (kz, X7) following Eq. (4). Get log K7, log 7z
Execute the actions. Perform transition as Eq. (5). Get 0z, and 7 7 following (Ren et al. 2024).
Add (657 (kf7 CL{)) (log Kw(kf)7 log 71'9(@{)) ’ Tﬂ',f) to buffer 5.

11: Calculate the advantage Ao using Eq. (6). Get success flag 7, ¢ refer to task results.

> Prepare for update

> Policy optimization

14: Update parameter 6 and © using DPPO (Ren et al. 2024)

15: Update parameter w with PPO loss in Eq. (8)
16: if Average stp < (- then e < ¢egow
17: Return: Trained base policy 7y and adaptor K.

> Stage 3: Conservative fine-tuning

Training Strategy

Directly training the base policy and adaptor from scratch
often causes instability and even collapse. To address this,
D3P adopts a three-stage training strategy preceded by
behavior cloning of the base policy 7y on pre-collected
datasets.

Stage 1: Base DP Warm-up. We first warm up my with
DPPO (Ren et al. 2024) while keeping the denoising steps
fixed at c. The warming up proceeds until the task success
rate exceeds a preset threshold (;. This stage can be skipped
if a sufficiently strong base policy is already available.

Stage 2: Joint Training. Next, we initialize the adaptor
K., as a Gaussian policy with mean of ¢ and variance of v2.
Then we train K, and my jointly. Each iteration collects a
batch of trajectories followed by e PPO update epochs for
both modules.

Stage 3: Conservative Fine-tuning. When the average
denoising steps satisfies E[stp,] < (2, we switch to a conser-
vative stage. This stage mirrors Stage 2 but uses fewer up-
date epochs per iteration. This precaution prevents the adap-
tor from shrinking the denoising steps so aggressively that it
destabilizes the base policy and leads to a collapse.

The full algorithm of D3P, including the three-stage
schedule, is summarized in Alg. 1.

Experiments

To evaluate D3P, we conduct comprehensive robot manip-
ulation experiments in both simulation and the real world.
We first detail the experimental setups, then benchmark D3P
against several baselines. Subsequently, we present ablation
studies to analyze the contribution of each component in our
framework. Finally, we demonstrate the deployment of D3P
onto a physical robot, highlighting its practical applicability.

Setups

Environments We evaluate our method on eight manipu-
lation tasks from two benchmarks: Robomimic (Mandlekar
et al. 2021) and Franka Kitchen (Gupta et al. 2019). These
environments include simple pick-and-place tasks and chal-
lenging long-horizon, multi-stage assembly tasks.

Baselines We compare D3P against three representative
baselines covering different paradigms: (1) DPPO (Ren
et al. 2024), a state-of-the-art (SOTA) algorithm for online
fine-tuning DPs, (2) consistency policy (CP) (Prasad et al.
2024), a distillation-based acceleration method, and (3) Fal-
con (Chen et al. 2025), a training-free streaming approach.
To ensure a fair comparison, all policies are pre-trained on
the same dataset. Using the pre-trained policy, we train D3P
and the DPPO policy with an identical amount of online RL
data. The Falcon and consistency policy baselines are sub-
sequently derived from the DPPO fine-tuned policy.

Metrics We evaluate task performance using success rate

and episodic return (J = ZZ:O r.) where higher values
indicate better performance. To assess computational effi-
ciency, we follow Prasad et al. (2024); Chen et al. (2025)
and adopt the Number of Function Evaluations (NFE) per
action as our primary metric. NFE provides a fair compari-
son of inference cost because all methods use the same base
network architecture. For DPPO and CP, the NFE count is
equivalent to the number of denoising steps. For Falcon, its
selection mechanism requires an additional base policy in-
ference, adding one NFE per action. For our method, we
only count the NFE from the base policy, as our lightweight
adaptor has fewer than 1/15 the parameters of the base pol-
icy. All results are averaged over three random seeds, with
evaluations conducted on 100 episodes per seed.

For additional details on the experimental setup, please
refer to Appendix B.

7 = = 1.00{[%
180 %, * * 200{| %, * *.) . O\ * | 00 %,’&, *]
160 v_ & 180 - y 095 my 0.85 &
[}
° 2)
v T 0.90 o 2080
c140{ @ ¢ 160 A & - J 5 -
=1 . =1 2 [® 0.75
® - ® $ 085 @»
v 140 @
T 120 " - S 8070 v
12 @ 0.80 b4 3
100 0 v 0.65 oy
° 075 °®
8 ° 100 v v 060, ®
0.70 055
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
NFEs NFEs NFEs NFEs
(a) Lift (State) (b) Can (State) (c) Square (State) (d) Square (Pixel)
0.85 0.8 1.0
%, % *x ¥ .| % * e & , * " f
% %
0.80 . * i 07 £ L] 091 e 4
075 009 L] ° °
2 . 2 o 5 508 °
T 570 ° o 0.6 v o o
w Py »n b 4 »n
2 2 Bo08 807 v
80657 gos 8 Yo 8
=1 =1 3 3
? 0.60 %) o] ? 0.6
" - 0.4 ° 07
0.55 v . ° o 0.5
050 03 06 04
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
NFEs NFEs NFEs NFEs
(e) Transport (State) (f) Transport (Pixel) (g) Kitchen-complete-v0 (h) Kitchen-mixed-v0

-M- DPPO - CP

—¥- Falcon % D3P (Ours)

Figure 4: We plot success rate / episodic return against the Number of Function Evaluations (NFE) per action. We use episodic
return for the simpler Li ft and Can tasks because success rates for most methods saturate above 90%. D3P achieves the best
in performance and efficiency across all tasks. D3P matches or surpasses the peak performance of the 10-step DPPO baseline
while achieving an average 2.2 x speed-up. All results are averaged over 3 seeds with 100 evaluation episodes per seed.

Performance Evaluation

Fig. 4 compares our D3P against the baselines by plotting
their task performance versus inference cost. On the simpler
Lift and Can tasks, the success rates for most methods sat-
urate above 90% and we use episodic return as a more fine-
grained performance metric. In this figure, an ideal method
would occupy the upper-left corner, signifying high perfor-
mance achieved at a low inference cost.

As expected, the performance of the DPPO fine-tuned
policy correlates with its inference cost. Reducing the NFEs
improves training and inference speed, yet leads to a clear
performance drop in success rate and return. Similarly, while
Falcon accelerates the 10-step DPPO policy, its performance
consistently decreases as the acceleration ratio increases.
The success rate (or return) of Falcon degrades sharply un-
der 6 NFE. Consistency Policy, through distillation, enables
few-step or even single-step inference. However, the distil-
lation process creates a performance ceiling that prevents it
from matching the optimal, multi-step teacher policy.

In contrast, D3P dynamically adapts its denoising effort,
using more denoising steps only when necessary. This al-
lows D3P to match or even exceed the peak performance
of the 10-step DPPO policy while achieving an average in-
ference speed-up of 2.2 times. The results unequivocally
demonstrate that D3P establishes a better Pareto frontier,
consistently achieving an optimal performance-efficiency
trade-off than all baselines across all tasks. Due to space

constraints, detailed training curves are provided in Ap-
pendix C.

Ablation study

We perform ablation studies on the Square and
Kitchen-complete-vO0 tasks to isolate the contrinbu-
tions of D3P’s key design choices.

Fig. 5 validates the importance of our three-stage train-
ing strategy. Removing stage 1 leads to a significant perfor-
mance drop at the start of the training, while removing stage
3 causes unstable curves during later training. Our full three-
stage approach effectively warms up the policy and then sta-
bilizes the fine-tuning process, proving crucial for guiding a
robust, optimal convergence.

Fig. 6 shows the analysis of our reward formulation in
Eq. (7). Setting @ = 0 leaves only the unbiased but de-
layed success reward. This high-variance signal makes train-
ing unstable and prone to failure. Setting 8 = 0 leaves only
the low-variance but biased advantage term. While the ad-
vantage term stabilizes training, the policy is more likely to
converge to a suboptimal solution.

Real-world Deployment

To demonstrate D3P’s effectiveness in the physical world,
we deploy the policy on a Franka robot arm. All inference
was performed on a consumer-grade desktop (i7-12900K
CPU, RTX 2080 GPU). We mitigate the visual sim-to-real

1.0 1.0
o 0.8 o 0.8
& &
» 06 ® 0.6
[} 173
3 3
© 04 o
@ @04
0.2
0.2
0 2 4 6 0 1
Environment Steps 1e6 Environment Steps 1e6
(a) Square (b) Kitchen-complete-v0
—— D3P D3P w/o stage1 —— D3P w/o stage3

Figure 5: Ablation of the three-stage training strategy. Re-
moving Stage 1 impairs initial learning, while removing
Stage 3 destabilizes final convergence. The full strategy is
critical for achieving rapid and stable performance.

1.0 1.0
0.8 /
) Q 08 4
s ®
06 X 0.6
[} [}
1%} 1%}
(o] (o}
04 04
=3 =3
@ @
0.2 0.2
0.0 0.0
0 2 4 6 0 1 2
Environment Steps 1e6 Environment Steps 1e6
(a) Square (b) Kitchen-complete-v0

—— D3P D3P, a=0 —— D3P,8=0

Figure 6: Ablation of our reward formulation. Relying solely
on the success reward (o« = 0) causes training instability,
while using only the advantage term (5 = 0) leads to subop-
timal convergence. Both components are essential for stable

training towards an optimal policy.

gap with a latent diffusion model (Rombach et al. 2021) that
aligns real-world images simulated ones. As illustrated in
Fig. 13, D3P successfully performs the Square task. For
crucial actions such as grasping and aligning, D3P increases
its denoising steps to 8 and 6, to generate accurate actions.
Conversely, for simpler motions, it reduces the step count
to as low as 3. D3P achieves the control frequency of 33.68
Hz, a 1.92x speedup over the 17.59 Hz of a fixed 10-step
diffusion policy. Additional deployment details are provided
in Appendix D.

Related Work

Optimizing Diffusion Policies via RL To overcome the
data dependency of imitation learning (Chi et al. 2023;
Pearce et al. 2023; Wang et al. 2024b; Prasad et al.
2024), many methods use RL to optimize DPs. In offline
RL, methods adapt DPs using techniques derived from Q-
learning (Wang, Hunt, and Zhou 2022; Hansen-Estruch et al.
2023) or policy gradients (Kang et al. 2023). In the on-

Denoising
Steps

1
1
1
1
1
T
1

s , / ‘\Time
e . ’ |
Moving Grasping . Moving AIigr_1ing Dc\me
R mbn PR MRS SRl

8-S a-Y ' e -

CLRE RY A i\d

Figure 7: Real-world demonstration of D3P performing the
Square task. The plot shows that D3P dynamically adjusts
the number of denoising steps during task execution. It al-
locates more steps for crucial actions, such as grasping and
aligning, and fewer for routine movements.

line setting, DPs are often trained within actor-critic frame-
works (Wang et al. 2024a; Yang et al. 2023; Ren et al. 2024;
Li et al. 2024) or with action-gradients from a learned Q-
function (Psenka et al. 2023). However, these methods apply
a fixed number of denoising steps for all actions, leaving the
critical issue of slow inference speed unresolved.

Accelerating Diffusion Policy Inference To improve the
inference speed of DPs, a straightforward way is reduce the
number of denoising steps. Prior work primarily use pol-
icy distillation (Prasad et al. 2024; Wang et al. 2024b) or
streaming denoising (Hgeg, Du, and Egeland 2024; Chen
et al. 2025). A key limitation is that these methods treat all
actions as equally important. In contrast, our method, D3P,
adaptively adjusts the computational effort for each action.

While the concept of adaptive denoising exists for single-
image generation (Ye et al. 2025), the sequential decision-
making of robotics presents distinct challenges with long-
term rewards and temporal dependencies. We address this by
formulating the dynamic denoising problem as a two-layer
POMDP and jointly optimizing the base diffusion policy and
the adaptor. The training process is stabilized by a special-
ized reward and a three-stage training strategy.

Conclusion

In this work, we introduced Dynamic Denoising Diffu-
sion Policy (D3P), a diffusion policy capitalizing on the
varying action criticalities in robotic tasks. D3P employs a
lightweight adaptor to dynamically adjust denoising steps,
assigning more steps to crucial actions and fewer to rou-
tine ones. We use RL to joint optimize the base policy and
the adaptor with a carefully-designed reward and a three-
stage training strategy. Our simulation experiments demon-
strate that D3P achieves an averaged 2.2 inference speed-
up over baselines without compromising task success. Fur-
thermore, D3P is deployed on a physical robot, achieving
a 1.9x inference acceleration against a fixed-step diffusion
policy. These results underscore the potential of adaptive in-
ference in robot learning, developing more efficient policies
for real-time applications.

References

Chen, H.; Liu, M.; Ma, C.; Ma, X.; Ma, Z.; Wu, H,;
Chen, Y.; Zhong, Y.; Wang, M.; Li, Q.; and Yang, Y. 2025.
Falcon: Fast Visuomotor Policies via Partial Denoising.
arXiv:2503.00339.

Chi, C.; Xu, Z.; Feng, S.; Cousineau, E.; Du, Y.; Burchfiel,
B.; Tedrake, R.; and Song, S. 2023. Diffusion policy: Visuo-
motor policy learning via action diffusion. The International
Journal of Robotics Research, 02783649241273668.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM, 63(11): 139-144.

Gupta, A.; Kumar, V.; Lynch, C.; Levine, S.; and Hausman,
K. 2019. Relay policy learning: Solving long-horizon tasks
via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956.

Hansen-Estruch, P.; Kostrikov, I.; Janner, M.; Kuba, J. G.;
and Levine, S. 2023. 1Idql: Implicit g-learning as an
actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573.

Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in neural information pro-
cessing systems, 33: 6840-6851.

Hgeg, S. H.; Du, Y.; and Egeland, O. 2024. Streaming Diffu-
sion Policy: Fast Policy Synthesis with Variable Noise Dif-
fusion Models. arXiv preprint arXiv:2406.04806.

Janner, M.; Du, Y.; Tenenbaum, J.; and Levine, S. 2022.
Planning with Diffusion for Flexible Behavior Synthesis.
In Chaudhuri, K.; Jegelka, S.; Song, L.; Szepesvari, C.;
Niu, G.; and Sabato, S., eds., Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, 9902-9915.
PMLR.

Kang, B.; Ma, X.; Du, C.; Pang, T.; and Yan, S. 2023. Ef-
ficient diffusion policies for offline reinforcement learning.
Advances in Neural Information Processing Systems, 36:
67195-67212.

Kingma, D. P;; Welling, M.; et al. 2013. Auto-encoding vari-
ational bayes.

Li, S.; Krohn, R.; Chen, T.; Ajay, A.; Agrawal, P.; and
Chalvatzaki, G. 2024. Learning multimodal behaviors from
scratch with diffusion policy gradient. Advances in Neural
Information Processing Systems, 37: 38456-38479.

Loshchilov, I.; and Hutter, F. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983.

Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; and Zhu, J. 2022a.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35: 5775-5787.

Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; and Zhu, J. 2022b.
Dpm-solver++: Fast solver for guided sampling of diffusion
probabilistic models. arXiv preprint arXiv:2211.01095.

Ma, X.; Patidar, S.; Haughton, I.; and James, S. 2024. Hi-
erarchical diffusion policy for kinematics-aware multi-task
robotic manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
18081-18090.

Mandlekar, A.; Xu, D.; Wong, J.; Nasiriany, S.; Wang, C.;
Kulkarni, R.; Fei-Fei, L.; Savarese, S.; Zhu, Y.; and Martin-
Martin, R. 2021. What Matters in Learning from Offline
Human Demonstrations for Robot Manipulation. In arXiv
preprint arXiv:2108.03298.

Pearce, T.; Rashid, T.; Kanervisto, A.; Bignell, D.; Sun, M.;
Georgescu, R.; Macua, S. V,; Tan, S. Z.; Momennejad, L.;
Hofmann, K.; and Devlin, S. 2023. Imitating Human Be-
haviour with Diffusion Models. arXiv:2301.10677.

Prasad, A.; Lin, K.; Wu, J.; Zhou, L.; and Bohg, J. 2024.
Consistency policy: Accelerated visuomotor policies via
consistency distillation. arXiv preprint arXiv:2405.07503.

Psenka, M.; Escontrela, A.; Abbeel, P.; and Ma, Y. 2023.
Learning a diffusion model policy from rewards via q-score
matching. arXiv preprint arXiv:2312.11752.

Ren, A. Z.; Lidard, J.; Ankile, L. L.; Simeonov, A.; Agrawal,
P; Majumdar, A.; Burchfiel, B.; Dai, H.; and Simchowitz,
M. 2024. Diffusion policy policy optimization. arXiv
preprint arXiv:2409.00588.

Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2021. High-Resolution Image Synthesis with Latent
Diffusion Models. arXiv:2112.10752.

Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and
Abbeel, P. 2015. High-dimensional continuous control

using generalized advantage estimation. arXiv preprint
arXiv:1506.02438.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Shafiullah, N. M.; Cui, Z.; Altanzaya, A. A.; and Pinto, L.
2022. Behavior transformers: Cloning & modes with one
stone. Advances in neural information processing systems,
35:22955-22968.

Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; and
Ganguli, S. 2015. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, 2256-2265. pmlr.

Song, J.; Meng, C.; and Ermon, S. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502.

Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Er-
mon, S.; and Poole, B. 2020. Score-based generative model-
ing through stochastic differential equations. arXiv preprint
arXiv:2011.13456.

Wang, Y.; Wang, L.; Jiang, Y.; Zou, W.; Liu, T.; Song, X.;
Wang, W.; Xiao, L.; Wu, J.; Duan, J.; and Li, S. E. 2024a.
Diffusion Actor-Critic with Entropy Regulator. In Glober-
son, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet, U.; Tom-
czak, J.; and Zhang, C., eds., Advances in Neural Informa-
tion Processing Systems, volume 37, 54183-54204. Curran
Associates, Inc.

Wang, Z.; Hunt, J. J.; and Zhou, M. 2022. Diffusion poli-
cies as an expressive policy class for offline reinforcement
learning. arXiv preprint arXiv:2208.06193.

Wang, Z.; Li, Z.; Mandlekar, A.; Xu, Z.; Fan, J.; Narang, Y.;
Fan, L.; Zhu, Y.; Balaji, Y.; Zhou, M.; et al. 2024b. One-
step diffusion policy: Fast visuomotor policies via diffusion
distillation. arXiv preprint arXiv:2410.21257.

Yang, L.; Huang, Z.; Lei, F.; Zhong, Y.; Yang, Y.; Fang, C.;
Wen, S.; Zhou, B.; and Lin, Z. 2023. Policy representation
via diffusion probability model for reinforcement learning.
arXiv preprint arXiv:2305.13122.

Ye, Z.; Chen, Z.; Li, T.; Huang, Z.; Luo, W.; and Qi, G.-
J. 2025. Schedule on the fly: Diffusion time prediction
for faster and better image generation. In Proceedings of
the Computer Vision and Pattern Recognition Conference,

23412-23422.

Ze, Y.; Zhang, G.; Zhang, K.; Hu, C.; Wang, M.; and Xu,
H. 2024. 3d diffusion policy: Generalizable visuomotor pol-
icy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954.

Zhao, T. Z.; Kumar, V.; Levine, S.; and Finn, C. 2023. Learn-
ing fine-grained bimanual manipulation with low-cost hard-
ware. arXiv preprint arXiv:2304.13705.

A Implementation Details of Empirical Study

Our empirical study reveals that not all actions in a robotic task contribute equally to the results. This section details the specifics
of our empirical study.

As introduced in the Empirical Study, we train a return predictor, denoted as Dy : Opny X Agny — R, to predict the
subsequent return based on current observation o, and the unperturbed action a;. This predictor is trained via supervised
learning on a dataset collected from Monte-Carlo rollouts. The detailed procedure for data collection and training is presented
in Alg. 2, with all notations consistent with the main text.

Algorithm 2: Train a Return Predictor Dy

1: Input: Task environment Mgy, expert policy Texpert, Number of episodes L, discount factor veny, episode horizon 7',
update interval l;,, update epoch E'p, max buffer length M, variance v.

2: Initialize: Network Dy, Empty buffer B with max length M.

3: for/=0,1,...,L —1do

4: Reset environment to get og

5: Sample ¢; ~ Uniform{0,1,...,7 — 1}
6: fort=0,1,..., T —1do

7: Get expert action a; ~ Texpert (- | 0¢)
8: if t == t; then

9: E~N(0,0%),a) +ar+&
10: Execute a} to get 0z and ¢
11: else

12: Execute a; to get 0,1 and 7¢

T T—1;

13: Calculate J; <= > o Venv' 7'r

14: Add (o, ay,, J;) to B

15: if | % l;ne == 0 then

16: fore=0,1,...,Ep—1do

17: Update Dy, on B by minimizing the loss: £(¢) = + 2 (o.a,nes(Dolo,a) — J)?

18: Return: Trained predictor D.

We parameterize D, as a 5-layer MLP with hidden layer sizes of [256,512,1024, 512, 256]. For our experiments on the
Square and Transport tasks, we use L = 600 and L = 350, respectively. The full training hyperparameters are provided
in Tab. 1, with training curves shown in Fig. 8. Detailed settings for both tasks are available in Appendix B.

120
500
100
» 80 1) 400
[%2] [%2]
S S
60 300
40 200
20 100
0 200 400 600 100 200 300
Episodes Episodes
(a) Square (b) Transport

Figure 8: Training loss of the return predictor Dy versus training episodes for the (a) Square and (b) Transport tasks

Hyperparameter Value

max buffer size M 100000
number of parallel environments 10
discount factor vgny 0.99
noise variance v 0.1
update interval ljy 20
update epoch Ep 6
learning rate 0.0003
weight decay 0.0001

Table 1: Hyperparameters for training the return predictor D.

(a) Lift (b) Can 7 (c) Square (d) Transport

Figure 9: Four manipulation tasks in Robomimic

B Additional details of simulation experiments
B.1 Environment and Dataset
Environment We evaluate D3P in two benchmarks:

1. Robomimic (Mandlekar et al. 2021). We evaluate our method on manipulation tasks from the Robomimic suite, including
the simple pick-and-place tasks Lift and Can, the assembly task Square, and the bimanual handover task Transport.
Fig. 9 demonstrate the four manipulation tasks.

2. Franka Kitchen (Gupta et al. 2019). We also use the Franka Kitchen environment, a benchmark for challenging long-
horizon, multi-stage manipulation. As illustrated in Fig. 10, the robot need to complete 4 subtasks in sequence: open the
microwave, move the kettle, flip the light switch, and slide open the cabinet door. We use two settings in this environ-
mrnt: (1) Kitchen-complete-v0, where the policy is pretrained on a dataset of successful demonstrations, and (2)
Kitchen-mixed-v0, where the pretraining dataset contains contains various subtasks being performed, but the 4 target
subtasks are never completed in sequence together.

Figure 10: Franka Kitchen environment. In the environment, the robot need to complete 4 subtasks in sequence: open the
microwave, move the kettle, flip the light switch, and slide open the cabinet door.

Benchmark Task Obs dim (State) Obs dim (Pixel) Actdim x7, T Sparse reward

Franka Kitchen kitchen-complete-v0 60 - 9x4 280 Yes
kitchen-mixed-v0 60 - 9x4 280 Yes

Lift 19 - Tx4 300 Yes

Can 23 - Tx4 300 Yes

Robomimic Square 23 - Tx4 400 Yes
Transport 59 - 14 %8 800 Yes

Square (Pixel) 9 (3,96,96) x 1 Tx4 400 Yes

Transport (Pixel) 18 (3,96,96) x 2 14x8 800 Yes

Table 2: We detail the task configurations in this table, where“Obs dim (State)” is the dimension of the state observation, “Obs
dim (Image)” is the dimension of the pixel observation, “Act dim” is the dimension of a single action, 7T, is the action chunck
horizon, and 7" is the episode horizon.

We list the task configurations in Tab. 2. In this table, “Obs dim (State)” indicates the dimension of the state observation,
“Obs dim (Image)” is the dimension of the pixel observation, Act dim x7;, shows the shape of an action chunk, and 7 is the
episode horizon.

All tasks employ a sparse reward. In Robomimic tasks, the agent receives a reward of 0 for every timestep prior to task
completion. Upon successful completion, the agent is awarded a +1 reward for all subsequent timesteps until the episode
concludes. Therefore, the episodic return directly reflects the agent’s quality. A higher return indicates faster task completion,
whereas a lower return suggests the task was only finished near the end of the episode. If the task is not completed within the
maximum episode length of T steps, the total episodic return is 0. For the Franka Kitchen environment, the agent receives a +1
reward upon the completion of each sub-task. As there are 4 sub-tasks, the maximum possible episodic return is 4.

Dataset We pre-train the policies on the dataset provided by one of our baseline, DPPO (Ren et al. 2024). As acknowledged
by the authors of DPPO the dataset includes suboptimal data.

B.2 Baseline

We compare D3P against three representative baselines that cover different paradigms for improving or acclerating diffusion
policies.

DPPO Diffusion policy policy optimization (DPPO) (Ren et al. 2024) is a state-of-the-art algorithm for online fine-tuning
diffusion policies that operate with a fixed number of denoising steps. DPPO models the problem as a two-layer POMDP
to leverage the sequential nature of the diffusion denoising process. It directly optimizes the entire denoising chain using an
actor-critic framework. At each iteration, the diffusion policy 7y is updated with the following PPO-style loss function:

Lo=E {min (Aﬂemd (g, ag) 77@(0? ar) , A0 (67, ag) clip (WO(L az) 1 — €aip, 1 + écup) ﬂ 7)
To1a (Ofv af) T o (Ofv a’f)

where #(¢,i) = tN + (N — i — 1) is the time index in the two-layer POMDP, 0; is the observation, and ay is the action. The

advantage A™ is estimated as shown in Eq. (10), using a discount factor of vy os-

A™ (67, az) = Yhenoise (Jrs (07, az) — Vo (0r)) - (10)

Notably, DPPO employs a dynamic clipping parameter €.;p, whose value is determined by the denoising progress, t = 1 — ﬁ‘,
as defined in Eq. (11).

efraie t _ 1
_ 11
eCrate — 1 ()

Here, €pase, €coef, and €rq¢e are hyperparameters. DPPO provides structured online exploration and enhances training stability. In
experiments, we use the official hyperparameter settings from the original implementation, detailed in Tab. 3.

€clip = €Ebase + (Gcoef - 6base) .

Consistency Policy A Consistency Policy (CP) (Prasad et al. 2024) is created by distilling a pretrained diffusion policy, which
enforces self-consistency along the teacher model’s learned trajectories. This distillation enables CP to sample actions using
very few denoising steps. We denote the CP as gy (0, X}, i, 5), which is conditioned on the current observation oy, the current
action chunk Xti, the current noise level ¢, and a target noise level s < ¢. The distillation loss combines a Denoising Score
Matching (DSM) loss and a Consistency Trajectory Model (CTM) loss:

Lpsy = Eqy, i [d(zo, go(0t,24,7,0))]

- o (12)
‘CCTM = Ewo,i,s [d (90 (Ot,ge(O,XtZ,Z,S),S,O) » 90 (Ot,99(07 XZ 1aZ - 17 S)a 870))] -

Hyperparameter Value

Number of parallel environments 40
Condition horizon T, 1
Reward discount factor vgny 0.999
Advantage discount factor YpgNnoISE 0.99
GAE)\ 0.95
Optimizer AdamW
Actor learning rate le-4
Actor weight decay 0
Critic learning rate le-3
Critic weight decay 0
Batch size 10000
Value loss coefficient 0.5
Entropy loss coefficient 0
Clip coefficient base €pase 0.001
Clip coefficient €coef 0.01
Clip coefficient rate € 3
Max gradient norm 10.0
Rollout steps 400
Update epoch 10
Denoising 7 1.0

Table 3: Hyperparameters of DPPO

In these equations, XZ*1 is generated from X by the teacher policy, and d(z,y) is a pseudo-Huber loss function measuring
the distance between x and y, as shown in Eq. (13)

d(z,y) = /llz —yl3 + % —c. (13)

During training, the final loss is a weighted sum of Lpgys and Loy with coefficients wpgas and wer s, respectively. For
our experiments, we distill CPs from our DPPO-finetuned policies. The hyperparameters for distillation are listed in Tab. 4.

Falcon Falcon (Chen et al. 2025) is a training-free streaming method that accelerates diffusion policies through partial de-
noising. The core insight of Falcon is to leverage the sequential dependency inherent in such tasks. Instead of initiating the
denoising process from a standard Gaussian distribution for every action, Falcon reuses a partially denoised action from a latent
buffer of historical actions, thereby significantly reducing the required number of sampling steps.

The selection of this action prior is managed by a thresholding mechanism. Falcon first uses the unexecuted action sequence
from the previous timestep as a reference. Then, for each partially denoised action a X’ in the latent buffer, Falcon computes

a one-step estimation X,? conditioned on the current observation o; with Tweedie’s formula (Eq. (14)), where ¢y is the noise-

Hyperparameter Value
Weight of DSM loss wpgsas 1.0
Weight of CTM loss werar 1.0
Optimizer AdamW
Batch size 512
Training epoch 1500
Learning rate le-4
Weight decay le-6
. CosineAnnealingWarmupRestart
Learning rate scheduler (Loshchilov angd Hutterp2016)
First cycle steps 1500
Warmup steps 100
Minimum learning rate le-5

Table 4: Hyperparameters of consistency policy

predicting network defined in Preliminaries, and &; is a set of parameters determinated by a fixed noise schedule.

A~ ~ . Xt _ 1 — _i ,Xi, .
X0 = E[X0]o,, X} i) = 2t — V"¢ €o(0n Xi,1) (14)

VvV
Then we form a candidate set S, consists of actions whose one-step estimations are within a certain distance €pyeon Of the

reference action. The final prior action X/ is then sampled from this set with a probability that favors lower noise levels,
modulated by a temperature parameter . This thresholding mechanism allows Falcon to find the best action priors.

B.3 Hyperparameters of D3P

The D3P training hyperparameters are provided in Tabs. 5 and 6. The settings for the base policy are based on those from
DPPO. In contrast, for the adaptor, we keep most hyperparameters unchanged but specifically tune several key parameters, such
as (1, (o and the reward weight 5.

Fine-tuning Base policy 7y Training Adaptor K,
Hyperparameter Value Hyperparameter Value
Number of parallel environments 40 Condition horizon T, 1
Condition horizon T, 1 Denoising step discount 0.95
Reward discount factor ~vgny 0.999 reward discount factor 0.99
Advantage discount factor YpgnoIsSE 0.99 GAE)\ 0.95
GAE A\ 0.95 Optimizer AdamW
Optimizer AdamW | Adaptor weight decay le-3
Actor learning rate le-4 Batch size 40000
Actor weight decay 0 Value loss coefficient 1.0
Critic learning rate le-3 Entropy loss coefficient 0.01
Critic weight decay 0 Clip coefficient 0.01
Batch size 10000 | Max gradient norm 10.0
Value loss coefficient 0.5 Update epoch 10
Entropy loss coefficient 0 Rollout steps 400
Clip coefficient base €pase 0.001 Reward weight o 1.0
Clip coefficient €cqer 0.01
Clip coefficient rate € 3
Max gradient norm 10.0
Rollout steps 400
Denoising 7 1.0

Table 5: Shared hyperparameters of D3P

. Square Transport . . .
Hyperparameter Lift Can (State & Pixel) (State & Pixel) kitchen-complete-v0 kitchen-mixed-v0
Update epoch 10 10 10 6 10 10
Adaptor learning rate | le-4 le-4 le-4 3e-5 le-4 le-4
Threshold (; 100.0 170.0 210.0 310.0 33 33
Threshold (2 4.0 4.0 5.0 7.5 5.0 5.0
Reward weight 3 0.2 0.2 0.06 0.1 0.4 0.4

Table 6: Task-specific hyperparameters of D3P

B.4 Computation

All experiments are conducted on our server cluster running Ubuntu 22.04. The training environment is built on Python 3.8, with
specific dependencies listed in Listing 1. The hardware resources utilized for training are detailed in Tab. 7. As the Robomimic
and Franka Kitchen simulation environments are primarily CPU-intensive, our training process consumes significant CPU and
memory resources. Each training run is performed using a single GPU.

O 001N W B Wi —

Environment | CPU Memory GPU

Robomimic (State) | 45 Core 128G RTX 3090 24G

Training Robomimic (Pixel) | 45 Core 256G A800 40G
Franka Kitchen 10 Core 64G RTX 3090 24G
Evaluation All environment 16 Core 32G RTX 3090 24G

Table 7: Computing resources for training D3P

Listing 1: Dependencies for training D3P

av==12.3.0
einops==0.8.0
gdown==5.2.0
gym==0.22.0
hydra-core==1.3.2
imageio==2.35.1
matplotlib==3.7.5
omegaconf==2.3.0
pretty_errors==1.2.25
torch==2.4.0
tgdm==4.66.5
wandb==0.17.7

for robomimic environment
cython<3

ddrl

patchelf

mujoco==3.1.6

robomimic

robosuite @ v1.4.1

for franka kitchen
cython<3

ddrl
dm_control==1.0.16
mujoco==3.1.6
patchelf

C Additional Experiment Results
C.1 Performance Comparison

Fig. 11 presents the success rate and return versus Number of Function Evaluations (NFE) for all methods. In these plots, the
upper-left corner represents the ideal trade-off: high performance with low inference cost. With an equivalent training budget,
D3P consistently matches or surpasses the fixed 10-step diffusion policy baseline across both metrics.

The performance of the DPPO baseline correlates directly with its inference cost, dropping significantly as NFE is reduced.
The two acceleration baselines, CP and Falcon, exhibit distinct features. CP excels at few-step inference, outperforming Falcon
on tasks like Lift, Can, and Square (State). In contrast, Falcon, a training-free accelerator, achieves a better performance-

efficiency trade-off on more complex tasks such as Square (Pixel) and Transport (Pixel).

We present training curves in Fig. 12, and summarize quantitative results in Tab. 8. Across eight tasks, D3P achieves an
average success rate of 0.917, nearly matching the 0.918 of the 10-step DPPO baseline. Meanwhile, D3P achieves a 2.2 X mean
speed-up. We calculate this per-task acceleration ratio, 4., using Eq. (15).

T
Eall episodes [Zt:() StpDPPO,t}

Tace = T (15)
]Eall episodes [tho StpD3p’t:|
Task DPPO Falcon CP D3P (Ours)
NFE SR Return NFE SR Return NFE SR Return NFE SR Return Acc. Ratio
100 1.0040.00 160.1444 | 10.0400 0.96+0.00 1546442 | 5.00 0.89+001 84.9+2.4
Lift | 400 1004000 1267427 |825+025 0.96+0.01 1584435 |3.00 0.95+0.01 89.3+28
(State) | 3.00 0.9910.01 1201427 | 6414021 094001 1459+59 | 1.00 1.00+0.00 1433+2.4 |>20+0-12 1.00L001 18244232 2.56
3604044 0764003 121.8+9.2
10.0 0.98+0.00 2044+34 | 10.040.0 0.9740.01 1940458 | 500 098+0.01 186.8+3.7
Can | 400 0944001 187.9+3.5 |7.8740.12 0.90+0.02 1833458 | 3.00 0.94+001 162.6+33
(State) | 3.00 0.89+0.01 1733437 | 5224035 080+0.03 117.1464 | 1.00 0944000 167.7+3.0 | >/ 1+0-37 0.98+0.02 201.1+£80 2.70
4234028 0674003 96.3+8.1
10.0 0994000 303.142.2 | 10.040.0 0.98+0.00 3004463 | 50 088001 2443184
Square | 5.00 0.95+0.03 285.9+10.0 | 5414022 0.94£0.04 256.7+73 | 3.0 0.88+0.02 244.6+2.6
(State) | 4.00 0.90+0.04 265.8+123 | 4414030 080+0.04 20744838 | 1.0 086+001 2340424 |+05+0.20 0.99+0.01 308.7455 2.47
300 0.88+0.04 22124149 |3.03+034 0.74+0.06 164.1+48.6
Tramsoort | 100 0.80+0.05 32363243 | 10.0£0.0 076004 32142284500 0715006 2435+24.8
(SOt 1700 0.58:0.04 2334£25.0| 7755050 0.76£0.04 300.4£3L.1 | 300 0.7420.03 27005199 6.7540.14 0.80£007 3410308 148
500 0.58+0.05 22124223 | 6.69+0.89 056006 239.6+431.5 | 1.00 0.64+0.03 235.0+22.8
10.0 0.86+0.05 24051142 | 10.040.0 0.87+0.04 22821149500 0.63+0.06 153.147.4
Square | 5.00 0.780.07 187.0+20.9 | 6.89+0.30 0.87+0.06 212.8+214 | 3.00 0.65+-0.03 161.8+9.6
(Image) 4824051 0704006 162.8428.1| 1.00 0.60+0.03 1503+48 |>-03+074 0.89+£0.03 2320432 2.53
3394036 0.64+007 128.9+8.4
Transoort | 100 075002 2899135 | 10.0£0.0 0755002 284.6£9.7 [500 039007 104884
(DO 17,00 0.63£003 24094129 8.12£0.16 0.74£0.04 2713102 | 300 0362008 98493 | 689+0.52 0755003 2850498 145
age 6.55-0.71 0.59+£0.09 213.9+16.1 | 1.00 0.45+0.04 119.3+7.8
10.0 0.98+0.00 3.96+0.02 | 10.040.0 0.9940.01 3.98+0.03 | 50 0.76+0.03 3.48-+0.09
Kitchen | 5.00 0.94+0.01 3.91+0.03 | 7.9240.18 0.98-£0.01 3.95+4007 | 3.0 0.67+0.01 3.17+0.02
(Complete) | 400 0.90+0.01 3.83+0.03 | 5524039 0.82+4005 3.56+008 | 1.0 0.65+0.01 299+0.02 |*13+037 0.98+£0.01 3.98+0.02 2.4l
4544031 0.77+40.05 3.50+0.07
10.0 0994000 3.99+0.00 | 10.040.0 0.99+0.01 3.98+0.05 | 50 0854006 3.7240.10
Kitchen |5.00 0.0+0.0 2.99+0.01 | 7.79+0.15 0.9940.01 3.88+0.04 | 3.0 0.8140.06 3.57+0.09
(Mixed) | 400 00+0.0 2994000 | 5.76+0.21 0.904005 344+0.09 | 1.0 0904005 380+007 |*+78+002 097+0.02 3934005 2.09
4404037 070+0.07 3.22+0.10

Table 8: Detailed results of all methods, fomulated as mean =+ std. All results are averaged over 5 seeds.

Success Rate

o
®
=}

0.75

(a) Lift (State) - Success Rate

350

300

Return
n
(4]
o

200

150

(b) Can (State) - Success Rate

&
s, & * — &
%> u-W - 1.001 %, * s, v 0.901 %, *
& ° ¥ oss " & y ¥
. ¥ v 0951 o o ’ y 0.85
¥ [} 2 @
2090 o v % 0.90 o 2os0
o | 4
o - [} 'Y o
° 3 085 Bossl ® 8075
8 0.80 v 8 8070 v
@ 0.75 ? 080 g @ 0.65 o
. . ¥
2 d
y 0.70 0.7 v 060 ®
v
X 0.70)
2 4 5 8 1 0% 3 2 5 [10 2 2 6 8 0 0% P) 6 8 10
NFEs NFEs NFEs NFEs

(c) Square (State) - Success Rate (d) Square (Pixel) - Success Rate

08 1.0
108 > ¥]
%, % * y---a %y K x===4 %, *
Y * P I = 09{’e y
y ~v : 0.9 w °
.. 2 o £ £os 4
. 06 v T o
] % b 4 %
3 gos 207 v
° gos 8 Ve 8
@ e @ 306
] u 0.7
v 0.4 °
L 4 @ o 05
2 4 6 8 10 03 2 4 6 8 10 06 2 4 6 8 10 04 2 4 6 8 10
NFEs NFEs NFEs NFEs
(e) Transport (State) (f) Transport (Pixel) (g) Kitchen-complete-v0 (h) Kitchen-mixed-v0
- Success Rate - Success Rate - Success Rate - Success Rate
a
) * 200 6’@%’ * . 300 | % * » 240 o%& N -
-9 » n 220 ’
v] 180 275 =
o ° . 2 200 g
Y ,
h : g 160 N g250 ° O £ L
- 2 2 o 2180
. & 140 & 225 o &
v 160 o__ 7
120 v 200 ° °
140
® - 100 v 175 v
v 120
2 2 6 8 10 2 4 6 8 10 2 ! 6 8 10 2 2 6 8 10
NFEs NFEs NFEs NFEs
(i) Lift (State) - Return (j) Can (State) - Return (k) Square (State) - Return (1) Square (Pixel) - Return
300
& & &
@”@,« * ; O@”@, * yor” 4.0 &,,@,~ * . . = 4.0 s,@ * ; n
| §
5 250 o’ 38 38{ e .
v 3.6 3.6
. £ 200 N v g ‘ Y
° ° X 2 2 3.4 g 3.4
| 4
150 3.2 o 3.2 v
o
100 ° ° 301 e 3.0 | BE |
28 28
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
NFEs NFEs NFEs NFEs
(m) Transport (State) (n) Transport (Pixel) (o) Kitchen-complete-v0 (p) Kitchen-mixed-v0
- Return - Return - Return - Return
-l- DPPO —4@- CP -¥- Falcon % D3P (Ours)

Figure 11: We plot success rate and episodic return against the NFE. An ideal method occupies the upper-left corner, represent-
ing high performance at a low inference cost. D3P matches or surpasses the peak performance of the 10-step DPPO baseline
while achieving an average 2.2 x speed-up. All results are averaged over 5 seeds.

1.0 = — 1.0 , v 1.0
Z
0.8 0.8
Q Q jo) [
T © T T
T o6 T o6 c o
12 12} 12} 12}
1%] 173 173 173
[0 [0} [0} [0}
804 804 804 3
p=} p=} p=} >
9] 9] 9 %)
—— QOurs —— Ours —— Ours —— Ours
021 __ pppo-10 021 __ pppo-10 02} __ pppo-10 02} __ pppo-10
DPPO-4 DPPO-4 DPPO-5 DPPO-5
0000 05 10 15 20 0073 1 2 3 0075 2 4 6 0075 2 4 6 8
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6
(a) Lift (State) - Success Rate (b) Can (State) - Success Rate (c) Square (State) - Success Rate (d) Square (Pixel) - Success Rate
1.0 1.0 1.0
0.8 0.8 0.8
Q jo) jo) jo)
s © T T
o6 o6 o T o6
12 12} 12} (2}
1%] 173 173 173
[0 [0} [0} [0}
804 804 3 \ 804
3 3 g |y 3
- —— Ours —— Qurs —— Qurs
0.2 —— DPPO-10 021 ous 0.2 —— DPPO-10 0.2 —— DPPO-10
DPPO-7 —— DPPO-10 DPPO-5 DPPO-5
.0+ X X 0.
0073 2 4 6 8 0073 1 2 3 4 0075 1 2 000 0.5 1.0 15
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6
(e) Transport (State) (f) Transport (Pixel) (g) Kitchen-complete-v0 (h) Kitchen-mixed-v0
- Success Rate - Success Rate - Success Rate - Success Rate
200{ — Ours 200
—— DPPO-10
175 DPPO4 180
g 150 £ 160
2 2
[} J5}
2125 & 110
100 150
/\\/ 120 —— Qurs —— Qurs 100 —— Qurs
75 { —— DPPO-10 —— DPPO-10 —— DPPO-10
/ DPPO-4 100 DPPO-5 DPPO-5
100 50
00 05 10 15 20 0 1 2 3 0 2 4 6 0 2 4 6 8
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6
(i) Lift (State) - Return (j) Can (State) - Return (k) Square (State) - Return (1) Square (Pixel) - Return
400
250 4.0 4.0
300 300 35 35
£ £ £ £
5200 250 330 380
Q [} [} [}
s i o i
200 \ 25
100 —— Ours 150 251 N —— Ours ——— Ours
—— DPPO-10 — Ours —— DPPO-10 20 —— DPPO-10
DPPO-7 = DPPO-10 2.0 DPPO-5 . / DPPO-5
0 100 ’
0 2 4 6 8 0 1 2 3 4 0 1 0.0 0.5 1.0 15
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6
(m) Transport (State) (n) Transport (Pixel) (o) Kitchen-complete-v0 (p) Kitchen-mixed-v0
- Return - Return - Return - Success Rate

Figure 12: Training curves of eight tasks. Each curve is averaged over 5 random seeds.

D Real-world Deployment
We deploy D3P on a Franka robot arm to complete the Square task.

Setup We define the task environment as illustrated in Fig. 13a. In the Square task, the agent is required to successfully
grasp the handle of the square nut and precisely mate it with the corresponding square peg. We use a Franka robot arm for
executing, and a consumer-grade desktop (i7-12900K CPU, RTX 2080 GPU) for computing. We fabricated the physical objects
required for the task using 3D printing, ensuring that their color, shape, and dimensions are consistent with simulated objects,
as shown in Fig. 13b. For this task, D3P utilizes images and joint positions as input. The RGB images are captured by an Intel
RealSense D435i camera positioned 0.92m in front of and 0.53m above the robot’s base, providing a 45 degree downward
viewing angle. Fig. 14 shows the progress of this task, and we include a video in the supplementary materials that showcases
the agent executing this task.

(N

(a) Sgaure Task Setting (b) We use 3D print to manufacture the objects

Figure 13: The Square task involves: (1) grasping the handle of the square, (2) inserting the square onto corresponding peg.

Ui i i B -

e Vv V2 VDN \

Figure 14: Demonstration of the Square task

Sim-to-real transfer To achieve sim-to-real transfer without real-world data, we employ a latent diffusion model
(LDM) (Rombach et al. 2021) to convert real-world images into a style that approximates the simulated domain, as illus-
trated in Fig. 15. The process begins with a pretrained Variational Autoencoder (VAE) that encodes the input image into a
compact latent feature. Subsequently, a diffusion model operates on this latent feature to perform the translation. Finally, the
VAE’s decoder reconstructs the processed feature into the converted output image.

We train the LDM with paires of images collected in simulation by domain radomization. As illustrated in Fig. 16, we employ
domain randomization in the simulation by varying the object materials and lighting conditions, from which we collect paired
images of the canonical and randomized scenes.

Finally, to bridge the gap in camera parameters between the simulated and real-world environments, we introduce a curricu-
lum learning strategy during RL training. This curriculum systematically adjusts the camera’s intrinsic and extrinsic parameters,
progressively transitioning them from the initial simulation settings to the physical hardware setting.

(a) Real-world Image (b) Converted Image

Figure 15: We use LDM to convert real-world images into the simulation style

e

(a) Canonical Image (b) Randomized Image

Figure 16: Images pair for training LDM

