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Perturbative Gradient Training: A novel training
paradigm for bridging the gap between deep neural

networks and physical reservoir computing
Cliff B. Abbott, Mark Elo, and Dmytro A. Bozhko

Abstract—We introduce Perturbative Gradient Training
(PGT), a novel training paradigm that overcomes a critical lim-
itation of physical reservoir computing: the inability to perform
backpropagation due to the black-box nature of physical reser-
voirs. Drawing inspiration from perturbation theory in physics,
PGT uses random perturbations in the network’s parameter
space to approximate gradient updates using only forward passes.
We demonstrate the feasibility of this approach on both simulated
neural network architectures, including a dense network and a
transformer model with a reservoir layer, and on experimental
hardware using a magnonic auto-oscillation ring as the physical
reservoir. Our results show that PGT can achieve performance
comparable to that of standard backpropagation methods in cases
where backpropagation is impractical or impossible. PGT repre-
sents a promising step toward integrating physical reservoirs into
deeper neural network architectures and achieving significant
energy efficiency gains in AI training.

Index Terms—Reservoir computing, spin waves, neural net-
works, energy-efficient AI, perturbation methods, magnonics.

I. INTRODUCTION

Machine Learning has seen explosive growth in recent
years. With that growth comes an immense increase in the
power consumed when training and operating AI/ML models.
Training the ML model Meena had a carbon footprint roughly
equal to driving 242,231 miles in an average passenger vehicle
[1] and ChatGPT-4 cost more than $100 million to train [2]
with the majority of the cost assumed to be energy usage.
Some estimates even put the annual deployment energy con-
sumption for popular models at 25x the energy cost of training
[3], [4], which would put an energy price tag on ChatGPT-4 of
around $2.5 billion. On the lower end, estimates still indicate
that the energy cost of training makes up only 10-40% of
the lifetime cost [1], [5]. The growth in the energy demands
for AI has been exponential [5] and with current demands
for a single model like ChatGPT being equivalent to that of
33,000 households in the US [6], more energy efficient forms
of machine learning will be necessary to continue development
in the field.

Reservoir computing (RC) is a promising concept for reduc-
ing the energy costs of machine learning. An RC takes a lower-
dimensional input and maps it to a higher-dimensional output
via a complex, nonlinear, but dynamically consistent process.
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Unlike other machine learning architectures, the training pro-
cess is regulated to the output or readout layer(s) of the RC,
allowing significant reductions in training time [7]. The idea of
RCs has been previously applied to the transformer architec-
ture, which currently dominates the field of Large Language
Models, and showed that the introduction of ”frozen layers” as
reservoirs had a significant improvement in performance and
training time [8]. Physical reservoir computing takes this con-
cept and uses other natural systems, such as water waves [9],
to perform the non-linear process. Magnonics systems are one
such promising example of a physical reservoir computer with
significantly lower energy costs, with potential energy savings
of up to 90% compared to traditional electronic systems [10]–
[20]. The ability to replace conventional electronic systems
with magnonic reservoirs could potentially save $100’s of
millions of dollars in lifetime energy costs.

Despite their promise, physical RCs face a critical limita-
tion: the reservoir acts as a black box, making internal pa-
rameter access and backpropagation impossible. This severely
limits the applicability of physical RCs to only the input layer
of a network. As cutting-edge models are getting deeper and
more complex, this means the impact of a physical RC to
reduce energy costs is diminishing. To address this, we propose
Perturbative Gradient Training (PGT), a novel method that
eliminates the need for backpropagation, enabling physical
reservoir computers to be seamlessly integrated into neural
networks, regardless of depth and location of the RC.

This paper is structured as follows: Section II introduces
the theoretical framework and applications of PGT. Section III
presents results, comparing PGT to standard backpropagation
in a simulated reservoir system. Section IV applies PGT to an
actual physical reservoir system and examines its performance
in experimental settings. Finally, Section V discusses the
results and highlights the challenges and opportunities for
further development of Perturbative Gradient Training.

II. THEORY

The current state-of-the-art training methods, while differing
in how they update model parameters, all rely on backpropa-
gation. This is where the model is run in a forward pass on a
set of training data and a loss is calculated as a comparison
of the model output to the target data.

L = f(y, y′; θ) (1)

Here f() is the chosen function, such as a mean squared dif-
ference, y and y′ are the model output and target respectively,
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and θ is the set of model parameters. The loss is then passed
backwards through the model, layer by layer, calculating
the gradient of the loss for each individual parameter in
the network and then applying the chosen update function
(standard Stochastic Gradient Descent given here):

θGrad =
∂L

∂θ
(2)

θn = θn−1 − lr · θGrad (3)

Where lr is the learning rate, a hyperparameter set by the
user. Visually, this method searches the n-D parameter space,
looking along a single dimension at a time, and determines
whether or not the loss improves with an advance in that
direction. This is already a significant approximation for the
ideal path to a minimum [21], [22]. For instance, in a three-
dimensional landscape, the local gradient might indicate that
moving north and east individually reduces the loss, while a
combined north-east direction could lead uphill. The update to
the model would then have a negative impact. However, the
likelihood that such a negative update would happen repeatedly
is low and this method offers a favorable trade in simplicity
over precision. This simplicity allows computers to perform
these steps thousands of times, which has historically led to
good results.

The concept for Perturbative Gradient Training comes from
a technique often used in physics called Perturbation Theory.
Perturbation Theory approximates solutions to complex prob-
lems by starting with a simpler, exactly solvable version of
the problem and iteratively introducing small corrections. This
approach allows for incremental refinement, enabling solutions
to problems that would otherwise be too difficult to solve
directly. Here we start with our simple solution as the initial
pre-generated parameters. A small change to some of the
parameters is made and we analyze how that change effected
the loss. If the change was favorable, we keep a portion of
the change determined by the optimization step. If the change
was unfavorable, we subtract a portion of that change from
the original parameters during the optimization step.

In comparison to traditional backpropagation, which looks
at each dimension individually in parameter space, PGT picks
a single random direction in the overall space and evaluates
the gradient of the loss function along that random direction.
This is done by taking loss measurements by a full forward
pass of the model just as with equation (1). However, this time,
instead of calculating individual gradients for each dimension,
we generate a random perturbation matrix which is a set of
integers [−r,−r + 1, ..., 0, ..., r − 1, r] that is the same size
as the parameter space. This matrix represents the direction in
parameter space that we are looking. Here r is the ”range”
of the perturbations and is a hyper-parameter set by the
user. Increasing the range increases the number of possible
directions that PGT can look in parameter space (ex. Fig 1).

It is not always beneficial to include all the parameters all
the time. Thus at this step, we introduce the next hyperparame-
ter, the dropout scale. The dropout scale is a probability factor
used to determine whether a specific parameter perturbation is
kept or set to zero. When dropout is set to 0, all perturbations
are kept. At 1, all perturbations are removed.

r = 1 r = 2

Fig. 1. In a 2-D space, r = 1 corresponds to 8 directions and r = 2
corresponds to 16 possible directions, demonstrating how changing the range
effects the possible directions that PGT can search during training.

Next, we add (subtract) the perturbations to the parameters
and determine the new loss.

θp+ = θ + [PM ] · δ (4)

θp− = θ − [PM ] · δ (5)

Where [PM] is the perturbation matrix and δ is the scaling
factor. A new loss is then calculated and an overall gradient
for that perturbation (i.e. direction in parameter space) is
calculated.

Lp+ = f(y, y′; θp+) (6)

Lp− = f(y, y′; θp−) (7)

Grad =
Lp+ − Lp−

2 · δ
(8)

A ”gradient matrix” is then formed by multiplying the gradient
by the perturbation matrix.

[Update] =
Grad · [PM ]

[Counts]
(9)

where [Counts] is a matrix keeping track of the absolute value
of the perturbations for scaling. The update can then be applied
using any of the standard optimization step techniques. This
is similar to proposed methods for training Quantum Neural
Networks through parameter shifting [23]. However, unlike
PGT, parameter shifting requires a baseline forward pass and
an additional forward pass for every parameter in the network,
resulting in potentially millions of forward passes per training
sample. With PGT, there are only two forward passes per
sample. During the training cycle, we found that generating a
new perturbation matrix for every sample resulted in the best
performance.

In this fashion, backpropagation has been replaced by a
second forward pass. Because this method only requires two
forward passes, a physical reservoir deployed at any position
within the network will not prevent training of the parameters
before it.

III. SIMULATED RESULTS

For initial testing, we created a small dense network that fed
into a simulated physical reservoir that was a second complex
network whose parameters were not updated (Fig 2) but
gradients could be passed back through the reservoir. PGT is
not intended to be used in a system where backpropagation is
possible. However, this comparison is helpful in understanding
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Reservoir

Input Layer

Output Layer

Fig. 2. Initial simple network design. Actual sizes: Input 30, 1st Hidden 200,
2nd Hidden 200, Reservoir In 5, Reservoir Out 100, Output 2.

PGT
PGT

PGT

Fig. 3. Initial PGT training performance with Stochastic Gradient Descent
(SGD) or Adam Optimization compared to backpropagation ”Baseline” train-
ing. Top: PGT on the small network outperformed standard SGD significantly
both in speed and final loss. Bottom: Adam backpropagation significantly
outperformed SGD and PGT. Occasionally PGT training with Adam updates
would break through the SGD limit and steadily improve towards the best
loss achieved by Adam backpropagation.

the trade-off between the benefits of introducing a physical
reservoir into the network and the current limitations of this
training method. The simulated reservoir consisted of 4 layers
of size 100 or 200. The forward pass of the reservoir passed
through the layers multiple times creating recurrent loops.

For this training, we used the Wisconsin Breast Cancer
Database [24], which consists of 30 input features resulting in
2 classifications, malignant or benign. A simple Mean Squared
Error Loss was used.

MSELoss =
∑
n

(yn − y′n)
2 (10)

This dataset and network design resulted in an interesting
outcome in that Stochastic Gradient Descent [25] (SGD)
backpropagation always stopped at a MSE Loss around 0.2338
whereas Adam [26] backpropagation was regularly able to
achieve a minimum loss of 0.0221. When PGT was applied
to the problem, both PGT with SGD and Adam optimization
achieved results faster than the SGD baseline, but also got

Reservoir

Reservoir

Fig. 4. Transformer Architecture with Feed Forward networks replaced by
Reservoir Computers.

stuck at the SGD limit (Fig 3 top). Occasionally, the PGT
with Adam optimization would break through that limit and
continue steadily towards the min loss achieved by Adam
backpropagation. However, that improvement was very slow
comparatively (Fig 3 bottom). Using a low dropout rate, we
were able to reach the SGD limit more quickly, but only a
high dropout rate (0.999) tended to break through the SGD
limit.

Next, we looked at applying PGT to the transformer archi-
tecture as suggested by Shen et al. [8] where the feed-forward
layers of the transformer are treated as reservoirs (Fig 4). We
used a single-layer encoder and decoder with an embedding
size of 512. The same simulated reservoir was used as in the
previous section. For this training, we used a small segment
of the Multi30k English to German translation database [27]
(250 samples to train and 250 samples to test). The outputs
were left as embeddings and a MSE Loss was used again.
With the transformer, both SGD and Adam backpropagation
regularly outperformed PGT. Only a very high dropout rate
of 0.9999, which corresponded to about 330 parameters per
perturbation out of 3,363,652 total parameters, was able to
consistently train for PGT. Still, PGT achieved a minimum
loss of 1.097 after 745 epochs, taking 2.86x longer to reach
maximum performance, while Adam achieved a minimum loss
of 0.86 after about 260 epochs (Fig 5).



4

Fig. 5. Performance of PGT on a simulated reservoir transformer. While
backpropagation improved significantly faster, PGT was able to get a reason-
able result taking only 2.86x longer.

IV. EXPERIMENTAL RESULTS

A. Physical Reservoir Dynamics

To test our approach experimentally, we used a Magnonic
Auto-Oscillation Ring as the physical reservoir computer. A
basic diagram of the setup is provided in Fig. 6. A thin
10.5µm-thick film of Yttrium Iron Garnet (YIG, Y3Fe5O12)
is placed into a 500 G external magnetic field applied along
the direction of intended wave propagation realizing the so-
called Backward Volume Magnetostatic Spin Wave (BVMSW)
geometry.

The orientation of the external magnetic field allows for the
excitation of different spin wave geometries and is one of the
characteristics that makes magnonics interesting for reservoir
computing. A field applied out of plane of the waveguide
excites Forward Volume Magnetostatic Spin Waves (FVMSW)
and a field in plane but perpendicular excites a Surface Spin
Wave or Damon-Eshbach mode (DE). Each wave type has
characteristics that may be of more interest depending on
the application. For example, the propagation direction: DEs
propagate in one principal axis (perpendicular to the in-plane
field), but in a nonreciprocal manner (the waves localize
differently on opposite surfaces for +k vs. −k). BVMSWs
propagate along the axis parallel to the magnetization (i.e.,
one in-plane axis) in both the +k and −k directions. FVM-
SWs propagate in any direction along the 2D plane of the
waveguide. Combinations of these waves can be achieved by
orienting the external field in between these primary directions.

A Tabor Proteus Arbitrary Waveform Transceiver (AWT)
delivers an electric signal to a thin strip of wire laid perpendic-
ularly across the YIG waveguide, serving as the input antenna.
According to Ampère’s Law,∮

B · dl = µOIenc (11)

the current in this antenna induces an oscillating magnetic
field. Here B is the Magnetic field along the closed loop path
defined by dl, Ienc is the current in the antenna, and µO is
the permeability of free space. This oscillating magnetic field

excites a spin wave in the magnetic spins of the YIG film.
The dynamics of this wave is governed by the Landau Lifshitz
Gilbert (LLG) equation.

dM

dt
= −γM×Heff +

α

Ms
M× dM

dt
(12)

Here M is the magnetization vector (magnetic moment per unit
volume) of the material; Heff is the effective magnetic field,
which includes external fields, anisotropy fields, exchange
fields, and demagnetization fields; γ is the gyromagnetic ratio,
which relates the magnetic moment to its angular momentum;
α is the Gilbert damping parameter, a dimensionless constant
that governs how quickly the magnetization relaxes to equilib-
rium; and Ms is the saturation magnetization, the maximum
magnetization the material can achieve. As the wave travels
along the waveguide past the output antenna, the wave creates
a current in it in the reverse process as the input antenna.
That signal then travels to an amplifier that increases the
signal by a constant amount. The signal is split back to the
AWT for readout and back to the input signal of the input
antenna. In this fashion, a pulse from the AWT will travel
around the loop several times (determined by the amount of
gain given by the amplifier and attenuator combination on the
main ring loop). Interactions between the looping waves and
newly generated waves introduce non-linear dynamics. This
setup gets it’s name from the fact that, if the amplification
is sufficient, noise in the system will begin to propagate as
a signal at the resonant frequency for the waveguide. The
amplification gain at which this occurs is called the ”auto-
oscillation threshold”. For the purposes of acting as a RC, the
ring is operated just below this threshold. This is done so that
previous inputs to the system circulate the loop several times in
a decaying fashion, which gives the system it’s fading memory,
an important characteristic for RCs. The amount of effective
memory can be tuned in the system by changing the amount
of gain from the amplifier, which determines how many times
a pulse in the system will loop before it decays completely.

The dynamics of the wave propagation, governed by the
LLG equation, is the source of the non-linear dynamics
required for the Auto-Oscillation Ring to function as the RC.
Heff is dependent on the wave amplitude leading to a nonlinear
frequency shift and other nonlinear spin-wave phenomena
providing a rich set of complex spin-wave interactions. For
more detail into the physics of magnonic auto-oscillation rings
and the state of that research, the reader is referred to the
reference works by Watt et al. [28], [29] and Ustinov et al.
[30].

B. Reservoir Characterization

A measure of short-term memory (STM) and parity check
(PC) are typically used to characterize the ability of auto-
oscillation rings to act as physical reservoir computers [31],
[32]. STM is done by giving the RC a series of 1’s and 0’s in
random ordering. The output of a trained RC is then analyzed
to see how many inputs the system can determine were 1 or 0
looking back from the last input to the previous. For example,
a STM of 7 would mean that the RC could reliably tell you
the last 7 inputs into the system. This metric quantifies the
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Fig. 6. Basic design of the Magnonic Auto Oscillation Ring. A signal is
generated at the AWT Out Channel that travels to the input antenna (gold) of
the YIG waveguide. A spin wave is excited in the waveguide and travels to
the output antenna. The signal generated at the output antenna travels to an
amplifier that amplifies the signal by a set amount. The signal is then split to
the In Channel of the AWT and back to the waveguide input antenna via a
variable signal attenuator.

”memory depth” of the system. PC is very similar, but looks at
the modulus 2 (XOR) summation of the previous inputs. This
means the RC must keep track of whether the number of 1’s in
the series of inputs was even or odd. A high PC score indicates
the system’s capacity to perform nonlinear transformations.
Typically, scores for STM and PC are given as a Capacity
defined as

C =

Tdelay, max∑
Tdelay=1

Cor(Tdelay)
2 (13)

where

Cor(Tdelay)
2 =

(Cov[ytrain(T, Tdelay), yout(T )])
2

Var[ytrain(T, Tdelay)] · Var[yout(T )]
(14)

and Tdelay is how far back you are looking, COV is the
covariance, and Var is the variance. This can range up to
10 and 4 for CSTM and CPC respectively in numerical
simulations [28], although there is usually a trade off between
maximizing one or the other. The setup for our auto-oscillation
ring achieved CSTM = 2.91 and CPC = 0.01. For reference,
Ustinov et al. [30] had CSTM = 5.1 and CPC = 0.1 for one
of their trials. Therefore, while it is not state-of-the-art for the
field or indicative of the potential for Magnonics Reservoir
Computing, our setup was sufficient to conceptually test PGT.

C. PGT Results

Initially we started with the small neural network described
by Fig 2 and replaced the simulated reservoir with the
magnonic auto-oscillation ring described above. This per-
formed extremely well achieving the MSE Loss minimum
of SGD backpropagation in only 14 training epochs (Fig 7).
However, it was noticed during debugging that there was no
change in the performance when training only the portion of
the network before the reservoir. Therefore, all the training

Fig. 7. Results for training the initial neural network design with a physical
auto-oscillation ring as the reservoir.

was occurring in the readout layer post reservoir. Although
still technically successful in the ability of PGT to train the
system, it did not prove the ability of using reservoirs deeper in
neural networks and training the network in the pre-reservoir
portion in a meaningful way. This is why we shifted to the
transformer approach.

As with the initial neural network, we took the reservoir
transformer architecture in Fig 4 and replaced the simulated
reservoir with our auto-oscillation ring. Due to the design and
implementation of the ring, each token for each sample had to
be sent through the reservoir one at a time which significantly
slowed down the training speed of the system. Even with
only 250 training samples and 250 testing samples, out of
the 30,000 available, it took around 24 minutes per epoch. It
should be noted that this is a limitation in our realization of the
RC with the given hardware and is not a limitation inherent
to physical reservoirs in general, nor a limit of PGT.

The physical reservoir transformer performed as expected
from the simulated results (Fig 8). Compared to the simulation,
we see that the initial loss was higher (simply a result of
the parameter initialization) but improves at a consistent rate.
Fig. 8b shows that difference between the simulated and
experimental loss is also decreasing with a negative second
derivative. This indicates that the experimental loss appears to
be converging slightly faster than simulation, which was also
observed in the small initial neural network.

V. DISCUSSION

In this work, we introduced the framework for Perturbative
Gradient Training (PGT) and demonstrated its potential to
address a major limitation in physical reservoir computing.
By enabling training without requiring backpropagation, PGT
offers a viable solution for systems where traditional gradient-
based methods are impractical or impossible. Our results
show that PGT achieves comparable performance to standard
backpropagation methods in scenarios where backpropagation
cannot be applied, underscoring its value as a training method
uniquely suited for such cases.

We estimated that training our reservoir transformer using
PGT took approximately 2.8x more training epochs than
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a)

b)

Fig. 8. Performance of the physical implementation of the reservoir trans-
former vs the simulation. a) shows that the physical reservoir is training in a
similar fashion to the simulation. b) the simulation started at a lower loss but
the delta is closing showing that the physical implementation is converging
faster than the simulation.

a comparable traditional transformer. However, the energy
efficiency gains achievable with physical reservoirs present a
compelling case for adoption. On the higher end of estimates,
substituting physical reservoirs into a transformer requires only
a 7.5% improvement in overall energy efficiency to break even
after the first year of model deployment. On the lower end,
energy reductions of 13-35% would be necessary.

Despite its promise, several limitations remain. One notable
challenge is the inability to batch training samples, which leads
to significantly longer training times per epoch compared to
GPU-based systems. Addressing this limitation will require
advancements at the reservoir hardware level, as it is not
inherently a constraint of PGT itself. Furthermore, integrating
physical reservoir transformers into existing AI ecosystems
will necessitate improvements in hardware-software co-design
to enhance scalability and reduce latency. The other major
hurdle for PGT is that it is currently not able to match the
best training losses achieved through current state of the art
backpropagation based methods. Further work needs to be
done to address this limitation and refine the method. Even
with these limitation, PGT offers a pathway to significant
energy cost savings, potentially reducing AI/ML operational
expenses by hundreds of millions of dollars.

On the physics side, future research should focus on
optimizing reservoir designs to support parallel processing

and exploring hybrid architectures that combine PGT-trained
physical reservoirs with GPU-based systems. Such innovations
could significantly accelerate training times while preserving
the energy efficiency advantages of physical reservoirs. On the
computer science side, further research on PGT should look
to refine the training methodology to achieve minimum losses
similar to that achieved with backpropagation.

In conclusion, the introduction of Perturbative Gradient
Training marks a significant milestone in the field of phys-
ical reservoir computing. Much like the impact of stochastic
gradient descent (SGD) on the development of modern AI,
we hope that PGT will inspire a wave of innovation and
research. By bridging the gap between physical reservoirs and
state-of-the-art AI systems, this paradigm has the potential to
drive sustainable and transformative advancements in artificial
intelligence.
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A. Calò, X. Zheng, J. Raabe, E. Riedo, and R. Bertacco, “Nanoscale
spin-wave circuits based on engineered reconfigurable spin-textures,”
Communications Physics, vol. 1, no. 1, Sep. 2018. [Online]. Available:
http://dx.doi.org/10.1038/s42005-018-0056-x

[17] A. N. Mahmoud, F. Vanderveken, C. Adelmann, F. Ciubotaru,
S. Cotofana, and S. Hamdioui, “Spin wave normalization toward all
magnonic circuits,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 68, no. 1, p. 536–549, Jan. 2021. [Online].
Available: http://dx.doi.org/10.1109/TCSI.2020.3028050

[18] F. Heussner, A. A. Serga, T. Brächer, B. Hillebrands, and P. Pirro, “A
switchable spin-wave signal splitter for magnonic networks,” Applied
Physics Letters, vol. 111, no. 12, Sep. 2017. [Online]. Available:
http://dx.doi.org/10.1063/1.4987007

[19] C. B. Abbott and D. A. Bozhko, “Hybrid magnonic reservoir
computing,” 2024. [Online]. Available: https://arxiv.org/abs/2405.09542

[20] W. Namiki, D. Nishioka, Y. Nomura, T. Tsuchiya, K. Yamamoto,
and K. Terabe, “Iono–magnonic reservoir computing with chaotic
spin wave interference manipulated by ion-gating,” Advanced Science,
vol. 12, no. 3, Nov. 2024. [Online]. Available: http://dx.doi.org/
10.1002/advs.202411777

[21] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of the
30th International Conference on Machine Learning (ICML-13), 2013,
pp. 1139–1147.

[22] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in International
Conference on Learning Representations (ICLR), 2017.

[23] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and
P. J. Coles, “Variational quantum algorithms,” Nature Reviews
Physics, vol. 3, no. 9, p. 625–644, Aug. 2021. [Online]. Available:
http://dx.doi.org/10.1038/s42254-021-00348-9

[24] O. M. William Wolberg, “Breast cancer wisconsin (diagnostic),” 1993.
[Online]. Available: https://archive.ics.uci.edu/dataset/17

[25] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient
Descent. Physica-Verlag HD, 2010, p. 177–186. [Online]. Available:
http://dx.doi.org/10.1007/978-3-7908-2604-3 16

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: https://arxiv.org/abs/1412.6980

[27] D. Elliott, S. Frank, K. Sima’an, and L. Specia, “Multi30k: Multilingual
english-german image descriptions,” in Proceedings of the 5th Workshop
on Vision and Language. Association for Computational Linguistics,
2016. [Online]. Available: http://dx.doi.org/10.18653/v1/W16-3210

[28] S. Watt and M. Kostylev, “Numerical simulations of a magnonic
reservoir computer,” Journal of Applied Physics, vol. 135, no. 2, Jan.
2024. [Online]. Available: http://dx.doi.org/10.1063/5.0184848

[29] S. Watt, M. Kostylev, A. B. Ustinov, and B. A. Kalinikos, “Implementing
a magnonic reservoir computer model based on time-delay multiplex-
ing,” Physical Review Applied, vol. 15, no. 6, Jun. 2021. [Online].
Available: http://dx.doi.org/10.1103/PhysRevApplied.15.064060

[30] A. B. Ustinov, R. V. Haponchyk, and M. Kostylev, “A current-
controlled magnonic reservoir for physical reservoir computing,”
Applied Physics Letters, vol. 124, no. 4, Jan. 2024. [Online]. Available:
http://dx.doi.org/10.1063/5.0189542

[31] T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota, Y. Suzuki,
and S. Miwa, “Macromagnetic simulation for reservoir computing
utilizing spin dynamics in magnetic tunnel junctions,” Physical
Review Applied, vol. 10, no. 3, Sep. 2018. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevApplied.10.034063
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