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ABSTRACT

Activation steering offers a promising approach to controlling the behavior of
Large Language Models by directly manipulating their internal activations. How-
ever, most existing methods struggle to jointly steer multiple attributes, often
resulting in interference and undesirable trade-offs. To address this challenge,
we propose Multi-Subspace Representation Steering (MSRS), a novel frame-
work for effective multi-attribute steering via subspace representation fine-tuning.
MSRS reduces inter-attribute interference by allocating orthogonal subspaces to
each attribute, isolating their influence within the model’s representation space.
MSRS also incorporates a hybrid subspace composition strategy: it combines
attribute-specific subspaces for unique steering directions with a shared sub-
space for common steering directions. A dynamic weighting function learns
to efficiently integrate these components for precise control. During inference,
MSRS introduces a token-level steering mechanism that dynamically identifies
and intervenes on the most semantically relevant tokens, enabling fine-grained
behavioral modulation. Experimental results show that MSRS significantly re-
duces attribute conflicts, surpasses existing methods across a range of attributes,
and generalizes effectively to diverse downstream tasks. Code is available at:
https://github.com/waitxian/MSRS.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing, driving advance-
ments in applications such as text generation, question answering, and dialogue systems (Qin et al.,
2024; Matarazzo & Torlone, [2025). However, as LLMs are increasingly deployed in real-world,
sensitive contexts, ensuring their behavior aligns with desired attributes, such as truthfulness and
fairness, has become a critical challenge (Yang et al.| 2024} Su et al.| 2024} Jiao et al.| [2024). These
models often exhibit undesirable behaviors, including toxicity, bias, or factual inaccuracies, rooted
in the complex and opaque representations learned during training (Le Bronnec et al., 2024). Ef-
fectively controlling these behaviors without compromising model performance remains an open
research problem (Jiao et al., 2025)).

Recently, activation steering methods offer a promising avenue for behavior adjustment by ma-
nipulating model activations post-training (Im & Li, 2025). Compared to fine-tuning, they offer
lightweight control without the need for retraining or access to model weights, enabling scalable
adaptation to diverse downstream tasks. These approaches derive an activation steering vector from
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Figure 1: Visualization of MSRS design and comparison with prior work.

the difference between the activations of positive and negative samples, applying it during inference
to guide outputs toward desired properties without altering model parameters (Rimsky et al.| 2024;
Zou et al.| 2023} [Li et al.,[2023a). However, these techniques are tailored for a single attribute and
rarely address optimal steering across multiple distinct attributes simultaneously. Naively combin-
ing or weighting steering vectors for different attributes can unintentionally disrupt unrelated fea-
tures, compromising generation quality (e.g., fluency or coherence) or inducing conflicts between
attribute-specific steering (van der Weijj et al.||2024; Ma et al., 2025)). For example, enhancing truth-
fulness may undermine fairness (Wolf et al., 2025) (see Figurefor an illustration), underscoring a
central challenge: mitigating trade-offs to achieve concurrent optimal performance across multiple
attributes.

Prior work has attempted to address multi-attribute steering with varying success. For example,
ACT (Wang et al.| 2025) employs clustering to train multiple steering probes on positive and neg-
ative samples, aiming to capture distinct steering patterns. Similarly, MAT-STEER (Nguyen et al.,
2025a) applies orthogonal constraints to activation steering vectors. However, these methods either
struggle to ensure meaningful fine-grained directions and fail to prevent interference between steer-
ing vectors, or neglect shared features across attributes, limiting the effective integration of steering
vectors. The Representation Fine-Tuning (ReFT) (Wu et al.,2024a)) based method achieves the goal
of steering by fine-tuning model representations in an orthogonal subspace. Orthogonality enables
more effective isolation of different attributes at the hidden state level, offering a more principled so-
lution for multi-attribute steering (Zhou, 2025). However, current ReFT approaches face difficulties
in subspace allocation, as different attributes demand varying subspace sizes and expressive capac-
ities, which makes their performance suboptimal; simple attributes may require smaller subspaces,
while complex ones necessitate larger ones.

To address the poor composability of multiple steering directions, we introduce Multi-Subspace
Representation Steering (MSRS), a novel framework that enhances multi-attribute steering
through subspace representation fine-tuning, as illustrated in Figure [Ib] To overcome the inter-
ference between different attributes’ steering, MSRS achieves adaptive steering selection and multi-
subspace collaborative control. Specifically, to reduce interference among attribute-specific direc-
tions, MSRS allocates orthogonal subspaces to each attribute, isolating their effects within the repre-
sentation space. To further tailor subspace capacity to each attribute’s expressive needs, we perform
SVD on the attribute-specific activation differences and use leading singular vectors to guide adap-
tive steering subspace allocation. Finally, MSRS combines attribute-specific subspaces for unique
steering directions with an attribute-shared subspace for common steering directions, and learns a
dynamic weighting function to compose attribute-specific and shared subspaces efficiently. Further-
more, during inference time, MSRS introduces a dynamic token selection mechanism that identifies
and steers the most semantically relevant tokens, enabling token-level intervention and outperform-
ing traditional fixed-position steering approaches.
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MSRS demonstrates effectiveness across diverse models (e.g., Llama2-7B (Touvron et al. [2023),
Llama3-8B-Instruct (Grattafiori et al., 2024), Qwen2-7B-Instruct (Team, 2024) , Mistral-7B-v0.3
(Jiang et al.| |2023)) and tasks (question answering and open-ended generation), significantly reduc-
ing attribute conflicts and achieving superior performance across multiple attributes datasets (e.g.,
concurrent improvements on TruthfulQA(+13%), BBQ(+4%)). Additionally, MSRS generalizes
well to standard NLP tasks, achieving gains on HellaSwag (+3.8%) and GLUE (+4.9%). Our con-
tributions can be summarized as follows:

* We develop MSRS, a novel multi-subspace representation fine-tuning method that miti-
gates interference between distinct attribute steering within task-specific subspaces while
capturing shared attribute directions in a common subspace. This design facilitates effec-
tive integration of multiple attribute steering objectives, enabling synergistic control over
LLM behavior.

* During inference, MSRS introduces a dynamic token selection strategy based on subspace
similarity, which outperforms the previous fixed token steering.

* Our method demonstrates significant performance improvements over other steering ap-
proaches on tasks such as question answering and open-ended generation.

2 RELATED WORKS

Activation Steering Methods. Activation steering aims to adjust activations in specific layers
or neurons to guide the model’s output towards desired attributes, without modifying its parame-
ters (Im & Li, [2025). Various approaches have been developed recently (Cao et al., [2024; |Bayat;
et al., 20255 |Oozeer et al.l 2025). For example, Contrastive Activation Addition (CAA) (Rimsky
et al [2024) computes steering vectors by averaging activation differences between positive and
negative examples, which are then added to token positions during inference to control model be-
havior. Inference-Time Intervention (ITI) (Li et al., 2023a) shifts model activations during inference
along predefined directions across attention heads, improving the truthfulness of LLMs. ACT (Wang
et al., 2025)) trains multiple steering probes on different steering vectors determined by clustering,
obtaining steering vectors for different steering patterns. MAT-Steer uses orthogonal constraints to
train activation steering vectors, thereby reducing conflicts between steering directions for different
attributes (Nguyen et al., [2025a). However, previous methods primarily address steering for indi-
vidual attributes or rely on simple combinations of steering vectors. To solve these limitations, we
focus on mitigating interference and optimizing composability across multiple attributes.

Representation Fine-Tuning Methods. In these methods, models will be steered through represen-
tation editing. Unlike methods that apply one-rank steering vectors, these approaches extend it by
using higher-rank matrices and enhance the expressive power of steering vectors, allowing for richer
control over model behavior (Wu et al., |2024a)). Localized Fine-Tuning (LoFIT) (Yin et al., [2024)
identifies critical attention heads for a task and trains offset vectors to modify their hidden represen-
tations, offering targeted adjustments. Compositional Subspace Representation Fine-Tuning (CS-
ReFT) (Zhou, |2025) advances this by learning orthonormal subspace transformations for distinct
skills, composed via a lightweight router, isolating edits in the hidden state to minimize cross-task
interference. Unlike previous methods that train steering functions in the same space, we aim to de-
velop representation fine-tuning methods to tune different attribute-specific subspaces and achieve
the adaptive integration of multiple attribute steering spaces.

3  MOTIVATION

To better illustrate our motivation and approach, we first revise ReFT (Wu et al., 2024a)). In ReFT,
it aims to steer the hidden representation h € R¢ by fine-tuning an r-dimensional subspace spanned
by the rows of R. Specifically, we can define the intervention function ® as:

®(h; R,W,b) =h+ R" (Wh+b— Rh), (1)

where the learned low-rank projection matrix R € R"*4, is typically constrained to have orthonor-
mal rows (RR" = I,),and W € R"*% b € R" are trainable parameters. ®(h; R,W,b) is integrated
into the model’s representations to guide the output towards desired attributes. The steering-affected
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output is subsequently optimized to minimize the target objective, thereby refining the parameters
W, b, and R. This method enables efficient steering of model representations by manipulating the
hidden activations in a learned, low-rank subspace.

While ReFT demonstrates encounters significant limitations when applied to multi-attribute sce-
narios. ReFT assumes a single attribute per input, but real-world inputs often involve multiple
attributes. Training the matrix R on such multi-attribute inputs forces all steering directions into
the same space, causing interference that hinders the model’s ability to balance the needs of each
attribute, ultimately limiting its performance across all attributes. [Zhou| (2025) attempts to address
this by partitioning R into equal-sized subspaces, each dedicated to a specific attribute, in an effort
to reduce interference. However, this approach overlooks the fact that different attributes require
subspaces of varying sizes based on their expressive needs. As a result, attributes with higher com-
plexity may not receive enough capacity for effective steering, while simpler attributes may waste
valuable space.

To address these challenges, we propose Multi-Subspace Representation Steering (MSRS). MSRS
mitigates the interference between attributes by assigning attribute-specific orthogonal subspaces
and adapts the size of each subspace to fit the expressive needs of the corresponding attribute by
utilizing Singular Value Decomposition (SVD), enabling dynamic adjustment for efficient represen-
tational space use. Furthermore, we introduce a shared subspace that captures common steering
directions across attributes while learning the intricate interactions between them. This shared sub-
space enables the model to learn complex combinatory relationships between attributes, offering a
more flexible and effective integration than methods that simply use gating mechanisms to combine
attribute-specific subspaces.

4 METHODOLOGY

4.1 MULTI-ATTRIBUTE STEERING DIRECTION EXTRACTION

To enable precise and simultaneous control over multiple attributes, we extract steering directions
that disentangle shared and attribute-specific features, identifying significant directions in the acti-
vation space.

Attribute-wise Activation Aggregation. To extract the primary steering directions for each at-
tribute from the activation values, we first capture the key feature representations for each attribute.
In detail, for each attribute ¢, we compute the average activation 7; from its corresponding dataset
D;. Specifically, we extract the model’s intermediate activation hi ; of layer [ for each sample j at
the last token, as it integrates information from all preceding tokens, thus capturing the full prompt
context (Lei & Cooper, 2025). The average activation for attribute ¢ is defined as:

|Di|

1 l
T = th”' 2)
[ j=1

To integrate information across all n attributes, we construct a combined activation matrix 7. by
concatenating the average activations:

Te=[m|m| ... | 7] € R, (3)

Shared and Specific Subspace Extraction. To retain common knowledge while enabling attribute-
specific steering, we perform singular value decomposition (SVD) on the aggregated activation ma-
trix 7.:

Te = UZV,. )

We adaptively select the smallest number 7 such that the cumulative energy (sum of top 7 singular
values) accounts for at least 90% of the total energy in .. This yields the shared subspace of V:

Bihared = VCTLTS S R7s >4, )

Intuitively, Bgharea captures the dominant shared directions across all attributes. By selecting the
top singular vectors, we capture high-variance directions that represent the most expressive steering
dimensions. It allows us to automatically allocate varying subspace sizes for each attribute based on
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its expressive needs. For complex attributes, it selects more top vectors, while simpler attributes are
allocated smaller subspaces, effectively addressing the mismatch between each attribute’s steering
capacity and its allocated subspace size.

For each attribute ¢, we then isolate attribute-specific directions by projecting 7; onto the shared
subspace and computing the residual:

HY) =7 — By ed Bobared - (6)

res
Applying SVD to Hr(e?, we obtain:
HO — @ gy @T (7

res

Similarly, we select the smallest number r; such that the top r; singular values of S() explain at
least 90% of the total energy, and define the private subspace as:

Ty

B, = (Vf") )T cprixd ®)

Generally, B; captures directions orthogonal to the shared subspace, preserving attribute-specific
semantics. This adaptive allocation allows each attribute subspace to retain only as much represen-
tational capacity as needed, reflecting its inherent complexity.

The alignment matrix Syjign is constructed by concatenating the shared and private subspace bases:

Salign = [Bshared7 Bla B27 R Bn] S R(TSJFZ?:l ri)Xd- (9)

4.2 ADAPTIVE SUBSPACE SELECTING

To steer multiple attributes effectively, it is crucial to avoid the interference that arises when steering
vectors for different attributes are trained in the same space. Furthermore, traditional methods often
rely on summing or averaging these vectors, which often fail to produce an effective combination,
as different attributes may require different subspace sizes or levels of emphasis. In contrast, we
propose an adaptive mechanism that enables the model to train in a specific subspace and learn to
combine different steering subspaces optimally, overcoming prior limitations.

Based on equation [1} we introduce a mask network m(h) = sigmoid(MLP(h)) € [0, 1]", which
assigns weights to each subspace dimension. The intervention function becomes:

@, ,(h; R,W,b,m) = h + R"diag(m(h))(Wh +b— Rh), (10)

where diag(m(h)) € R™*" is a diagonal matrix.

4.3  OPTIMIZATION OBJECTIVE

We optimize the steering function @, ,(h; R, W,b,m). Applying it to the representation H; , at
layer [ and position p. This changes the representation and influences the model’s output, which is
then used to compute the task-specific loss Lk, Which is defined as the standard cross-entropy loss
between the predicted logits and the ground truth labels, reflecting the model’s performance on the
downstream task.

To enable the steering function to perform meaningful and disentangled attribute control, we in-
troduce a subspace regularization term. Specifically, to encourage adaptive selection of relevant
subspaces, we define a binary prior mask mpyior € {0,1}", where entries corresponding to the
shared subspace Bghareq and the attribute-specific subspace B; are set to 1, and all others to 0. The
regularization loss is defined as:

2
ﬁreg - ||m(h) - mpriorH2 . (11)

This loss encourages the model to steer primarily within subspaces that are relevant to the target

attribute, while suppressing activation in unrelated dimensions.

We further encourage the learned representation R to align with the structured basis Sajign € Rkxd,

as defined in equation[9] The alignment loss is defined as:

<Ra Salign>

Lofign = 1 — ————2uen/_
o 1Rl | Satignll2”

12)
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which encourages R to lie in the subspace spanned by both shared and attribute-specific directions,
promoting more controllable and semantically meaningful representations during training.

The overall optimization objective is as follows:
L= Etask + )\lﬁreg + )\2£aligna (13)

where A1, Ay > 0 are hyperparameters balancing the terms. This optimization guarantees both
attribute-wise subspace alignment and inter-attribute separation, ultimately yielding an effective
steering space capable of precise and disentangled multi-attribute control. By integrating different
subspaces with a weighting network, we enable adaptive subspace combination, alleviating trade-
offs and optimizing performance across diverse attributes’ steering. See Appendix [A]for the detailed
algorithm.

4.4 DYNAMIC INTERVENTION POSITION SELECTION

Previous steering approaches often apply interventions at the same token position p across different
attributes, which can lead to interference between attributes. To overcome this limitation, we propose
a dynamic selection method that identifies the most relevant token position p; for each attribute ¢
by projecting token representations onto attribute-specific subspaces in R%. This enhances steering
effectiveness for attribute 7 by targeting interventions at the most influential tokens.

Consider an input sequence with token representations hj, ho,...,hp, where T denotes the se-
quence length. For each attribute ¢, we project the token representations onto its corresponding
subspace R;. The projection of a token representation h; onto this subspace is computed as:

proj (he) = R} Rihy. (14)

We then define the relevance score s; 4 of token ¢ with respect to attribute ¢ as the Lo-norm of this
projection:

sit = [[projg, (he)|l2- (15)
The intervention position p; for attribute ¢ is dynamically selected as:
p; = arg max  S;g, (16)
te{1,....,T}

ensuring that the token with the strongest alignment to the attribute-specific subspace is chosen.
The steering function @, ,,(h; R, W, b, m) for attribute ¢ is applied at position p;, allowing different
attributes to be steered at different tokens, reducing inter-attribute interference and enhancing control
precision.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. To evaluate the effectiveness of our proposed method, we conduct exper-
iments on three pairs of datasets, each designed to assess trade-offs between specific attributes in
language model steering. More details are provided in Appendix

TruthfulQA & BBQ: To evaluate truthfulness and bias, we use TruthfulQA with MC1, MC2,
BLEU, and BLEURT scores (Lin et al.,|2022)), and BBQ with accuracy as the metric (Parrish et al.,
2022)).

Alpaca & Refusal: We evaluate instruction following via win rate on Alpaca (Taor1 et al., 2023
Li et al.l 2023b) (vs. test-davinci-003), and refusal via Sorry-Bench scores judged by Mistral-7B-
Instruct-v0.2 (Xie et al., [2025)), which assesses the rejection of malicious instructions.

HelpSteer: We assess helpfulness, coherence, and verbosity by leveraging GPT-3.5-Turbo, follow-
ing the setting of (Nguyen et al., 2025a), to rate model outputs on a 0—4 scale (Wang et al., |[2023)),
which evaluates the quality of the generated content.

Additionally, we test the utility on several standard benchmarks, including Hellaswag (Zellers et al.,
2019), RACE (Lai et al., 2017), MMLU (Hendrycks et al., [2020), OpenBookQA (Mihaylov et al.,
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Table 1: Evaluation results on TruthfulQA, BBQ, Alpaca, Refusal, and HelpSteer. The best result
is highlighted in bold, and the second-best is underlined. The values reported are the mean perfor-
mance.

Method TruthfulQA BBQ Alpaca Refusal HelpSteer
MCI1 (1) MC2(1) Bleu(?) Bleurt(1) Acc () Win (1) Sorry (1) Help. (1) Coh. (1) Ver.({)
Llama3-8b-inst. 27.47 .21 45.6310.2s 46.891025 57.8810.33 0.608+0.011 0.1210.010 0.49110.021 3.7640.03 3411004 2.3340.03

ICL 28.3740.25 46.2140.26 48.3540.23 60441031 0.61940.013 0.2710.011 0.52140.024 3.8210.02 3.6410.03 2.4140.04
CAA 28411018 47.5540.23 454240.21 61.5410.28 0.629:0.009 0.29:10.008 0.49310.018 3.77+0.02 3.8910.02 2.5110.03
ITI 36.5010.20 54.2910.29 43.2240.24 66.3040.30 0.61240.012 0.2310.009 0.28040.015 3.82+0.02 3.2110.04 2.0610.03
ReFT 29.5810.16 49.5140.22 52.08.40.18 64.0640.29 0.637+0.008 0.30+0.008 045110020 3.7810.02 3.8310.02 2.38.40.02

MTL-LoRA 34.8240.17 47.2340.24 51.7810.19 63.2610.25 0.64110.008 0.2110.007 0.52440.022 3.48.40.04 3.7310.03 1.9010.02
MAT-STEER  29.2940.15 49.67+0.25 43.8140.22 55.311034 062210010 0.1410.009 0.420+0.019 3-84+0.02 3.6310.03 2-29+0.03
MSRS(Ours) ~ 34.9140.12 56.3240.20 52.3210.14 66.75:0.26 0.645:0.010 0-3610.008 0-529:0.02 3.89:0.01 3.9610.02 2.0410.02
Qwen2-7b-inst. 26.381.99 45.4110.99 49.63 1924 65281032 0.63419.000 0.12.10.0090 0.38410.018 3.5110.03 3.80+0.02 2.28410.03

CAA 28441017 47.2540.25 48.3540.20 58.9710.35 0.63510.00s 0.26+0.00s 040410019 3.7310.02 3.8740.02 2.2040.02
ReFT 29.8340.15 48.6940.24 52.5740.17 71.1540.26 0.63610.008 0.43+0.007 042110017 3.63+0.03 3.7810.02 2-38+0.03

MAT-STEER  23.0810.19 49.5130.28 51.7210.19 72.5310.25 0.64110007 0.1810.009 042910016 3.70+0.02 3.77+0.02 2.2510.02
MSRS(Ours)  34.7240.11 53.2710.21 53101012 74901021 0.64210.006 0.45:0.007 0.445:0.011 3.7610.01 3.8240.01 2.1710.02
Mistral-7b-v0.3 18.833:[]_28 36.54i0_33 41.56i0_29 54.52i0_3g 0.614i0_014 0.143:0_012 0.63110,023 3-751:0.03 3.923:0‘02 2.363:0_04

ICL 21924026 49.2340.30 44.1140.27 57.6410.35 0.62210.013 0.1810.011 0.64210.025 3.7710.03 3.9410.01 2.3910.03
CAA 28.7710.19 52.05+0.26 53.8540.20 62.2740.32 0.64610.009 0.2210.009 0.66340.021 3.76+0.02 3.8310.02 2.2710.02
ReFT 30.0740.17 49.6910.28 49391023 66.011031 0.61440.011 0.3240.00s 0.66810.019 3.8010.02 3.85:0.02 2.3310.03

MAT-STEER 2545102 48.384031 49.4640.24 62.624034 0.63140010 0.1940.010 0.64440.023 3.7840.02 3.86+0.02 2.29+0.02
MSRS(Ours) 31.3210.11 52.6210.13 50.611008 71.39410.17 0.644.10.007 0.38.10.006 0.69310.013 3.8210.02 3.9310.01 2.2140.02

Table 2: General capabilities on several benchmarks.

Method HellaSwag RACE MMLU  OpenbookQA  GLUE
Llama3-8b-instruct ~ 0.801 0.671 0.655 0.556 0.726
ReFT 0.821 0.677 0.651 0.559 0.757
ITI 0.746 0.589 0.546 0.507 0.742
MTL 0.782 0.661 0.567 0.562 0.697
CAA 0.833 0.671 0.648 0.557 0.738
Ours 0.839 0.683 0.657 0.568 0.775
Qwen2-7b-instruct 0.831 0.625 0.695 0.606 0.825
ReFT 0.822 0.644 0.698 0.613 0.770
MTL 0.782 0.641 0.687 0.562 0.697
CAA 0.837 0.633 0.698 0.609 0.830
Ours 0.835 0.648 0.702 0.616 0.832
Mistral-7b-v0.3 0.862 0.678 0.618 0.602 0.681
ReFT 0.872 0.679 0.603 0.608 0.655
MTL 0.869 0.644 0.530 0.574 0.682
CAA 0.869 0.667 0.619 0.611 0.693
Ours 0.874 0.681 0.613 0.622 0.707

2018)), and GLUE (Wang et al.| 2018]), all using accuracy as the evaluation metric. We aim to assess
whether MSRS preserves the model’s general abilities after fine-tuning, ensuring that task-specific
steering does not degrade overall performance.

Models and Baselines. We evaluate our method MSRS on 4 models: Llama2-7B (Touvron et al.,
2023), Llama3-8B-Instruct (Grattafior1 et al., 2024), Qwen2-7B-Instruct (Team), 2024)) , Mistral-
7B-v0.3 (Jiang et al.| 2023). And we compare MSRS with 6 baselines, grouped into 3 categories:
1) In-context Learning (Brown et al., 2020): Utilizes prompts to steer attributes without altering
model parameters. 2) Fine-tuning Methods: MTL-LoRA (Yang et al.,[2025)), which employs low-
rank adaptation for multi-task learning, enabling efficient attribute-specific fine-tuning. ReFT (Wu
et al., 2024b), which adjusts model representations by fine-tuning the representation to align with
target attributes. 3) Steering Methods: ITI (Li et al., 2023a) applies inference-time interventions
to modify activations and guide model outputs. CAA (Rimsky et al., 2024) steers behavior by
injecting contrastive activation vectors derived from positive and negative examples. MAT-STEER
(Nguyen et al.| 2025b)) implements multi-attribute steering with orthogonal constraints to minimize
interference between attributes.

Experimental Setup. All experiments were conducted on NVIDIA V100 GPUs. We employed the
Adam optimizer with a learning rate of 5 x 10~2 and a batch size of 2. The total subspace rank R
was 8, with dual regularization coefficients A\; = 0.3, A = 0.5. Steering was applied to the 15
transformer layer, selected as the most effective layer on the validation set. For each configuration,
we report the average and standard deviation over 3 runs with different random seeds {42, 43, 44}.
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5.2 MAIN RESULTS

MSRS excels in question-answering tasks. We first evaluate MSRS on Truthful QA and BBQ to
target the trade-off between truthfulness and bias. As shown in Table [I| baseline methods often
fail to optimize both simultaneously. For example, ITI enhances truthfulness (MC1 of 36.50 on
Llama3-8B-Instruct) but compromises bias mitigation (BBQ Acc of 0.612), while CAA improves
bias (BBQ Acc of 0.646 on Mistral-7B) at the expense of truthfulness (MC1 of 28.77). ICL im-
proves performance moderately across metrics but lacks standout improvements, and MAT-STEER
enhances MC1, MC2 and Acc while its BLEU and BLEURT drop. Unlike prior methods that often
improve one attribute at the expense of another, MSRS consistently balances both. MSRS achieves
superior performance across both attributes on multiple models: on Llama3-8B-Instruct, it attains
an MC2 score of 56.32 and BBQ accuracy of 0.645; on Qwen2-7B-Instruct, 53.27 and 0.642; and on
Mistral-7B, 52.62 and 0.644. These results demonstrate MSRS achieves a more favorable balance
across all models, demonstrating its capacity to jointly optimize conflicting objectives.

MSRS demonstrates strong performance in open-ended generation tasks. We assess MSRS
on Alpaca, Refusal, and HelpSteer datasets to evaluate trade-offs between instruction following,
refusal, and output quality attributes. As shown in Table [I, MSRS excels in balancing instruc-
tion following and refusal: on Alpaca, it achieves a win rate of 0.36 against test-davinci-003 on
Llama3-8B-Instruct, outperforming ReFT (0.30), while on Refusal, it scores 0.529 on Sorry-Bench,
surpassing CAA’s 0.493. Baselines like ITI struggle with refusal (Sorry-Bench score of 0.280), sacri-
ficing this attribute for others. For HelpSteer, MSRS achieves Helpfulness (3.89), Coherence (3.96),
and Verbosity (2.04) on Llama3-8B-Instruct, while methods like MAT-STEER improve Helpfulness
(3.84) but reduce Coherence (3.63) and Verbosity (2.29). MTL-LoRA achieves the best Verbosity
(1.90) but at the cost of Helpfulness (3.48). MSRS outperforms existing baselines in harmoniz-
ing instruction-following with refusal and delivers consistently high-quality generations across all
HelpSteer dimensions, demonstrating its ability to integrate diverse attribute objectives and enhance
open-ended generation for specific tasks. Note that even in cases where MSRS is not the absolute
best(e.g., Coherence on Mistral-7b-v0.3), it achieves the second-best result with a negligible gap
(0.01) and retains overall superiority across all attributes.

MSRS maintains strong general capabilities on standard NLP benchmarks. To verify that
MSRS does not compromise the model’s overall natural language processing abilities, we evalu-
ate its performance on several widely used benchmarks, as shown in Table [2] More results on the
MMLU (Table [5)) and GLUE benchmark tasks (Table [6)), are provided in Appendix [B] These tasks
collectively assess a model’s general reasoning, knowledge, and language understanding capabili-
ties, providing a comprehensive measure of its robustness beyond attribute-specific steering.From
the results, we can see baseline methods often compromise general capabilities due to overfitting to
specific attributes. For example, ITI, while effective for truthfulness, suffers notable performance
drops on general benchmarks like HellaSwag and MMLU on LLaMA3, indicating weakened com-
monsense and knowledge reasoning. ReFT offers modest gains (0.821 on HellaSwag, 0.677 on
RACE) but underperforms on MMLU (0.651), reflecting limited generalization. CAA shows strong
results on HellaSwag (0.837 on Qwen2) but inconsistent outcomes on RACE (0.625) and Open-
BookQA (0.609), indicating instability.

In contrast, MSRS consistently matches or ex-
ceeds baseline performance across these bench-
marks. On LLaMA3, MSRS achieves top g ;jFAT
scores. For GLUE, evaluations on LLaMA3 1 Ours
show MSRS achieving an average score of

0.775 across tasks, surpassing ITI (0.742) and H_m W W
ReFT (0.757). Figure 2] compares different X | | | | | |
tasks in the GLUE benchmark. MSRS achieves STz STSB ONLL o ColA QQF RIE
substantial improvements on SST-2 (0.979 vs.

0.947 for Vanilla) and STS-B (0.689 vs. 0.602), Figure 2: Comparison of model performance
reflecting enhanced sentiment classification and ~ across GLUE.

semantic similarity. On other tasks such as

QNLI and RTE, MSRS maintains competitive performance, matching or exceeding strong baselines.
This robust performance stems from MSRS’s shared subspace mechanism, which captures common
steering directions across multiple tasks and attributes. By leveraging these shared representations,
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Table 3: Comparison of steering subspace training strategies across datasets. The best result is
highlighted in bold.

Method TruthfulQA BBQ Alpaca  Refusal HelpSteer

MC1 MC2 Acc Win Sorry Help. Coh. Ver.
Llama3-8b-instruct
Same Space 29.58 4951  0.637 0.30 0.451 3.87 3.89 2.38
MSRS Atribute 3252 5255 0.627 0.36 0.529 3.88 396 224
MSRSRank 33.50 5274  0.646 0.35 0.527 3.89 3.95 2.28
Qwen2-7b-instruct
Same Space 29.83  48.69  0.637 0.434 0.422 3.63 3.78 2.38
MSRS gtribute 3472 5327  0.642 0.451 0.446 3.64 3.81 2.20
MSRSRank 2641  47.65  0.635 0.442 0.439 3.76 3.82 217
Mistral-7b-v0.3
Same Space 3032 49.69  0.615 0.33 0.669 3.82 3.85 2.33
MSRS Atribute 30.07 52.62 0.644 0.38 0.693 3.82 3.93 2.27
MSRSRank 2836 49.94  0.631 0.39 0.673 3.76 387  2.26

Table 4: Comparison of Last token vs. Important token intervention. The best result is highlighted
in bold.

Method Truthful QA BBQ Alpaca  Refusal HelpSteer

MC1 MC2 Acc Win Sorry Help. Coh. Ver.
LLaMA2-7B
Last Token 2641  42.88 0.631 0.12 0.579 2.70 2.68 2.73
Important Token 29.10  48.60 0.644 0.13 0.583 3.12 3.06 247
LLaMA3-8B-Instruct
Last Token 3350 52.74 0.648 0.36 0.529 3.88 396 224
Important Token 3371  56.32 0.655 0.32 0.511 3.85 3.95 1.99
Qwen2-7B-Instruct
Last Token 3472 5327  0.6421 0.45 0.446 3.70 3.82 2.17
Important Token 36.12 55.63  0.6572 0.42 0.448 3.69 383 2.06

MSRS enhances its generalization capabilities, enabling it to maintain strong performance on gen-
eral NLP benchmarks while excelling in targeted steering objectives.

5.3 ABLATION STUDY

Evaluating the effectiveness of adaptive subspace selecting mechanism. We conduct abla-
tion studies comparing three strategies for training steering subspaces: (1) Same Space, where
all attributes are trained in a single subspace without isolation; (2) MSRS Aibute, the basis matrix
R € R™*4 s partitioned into n + 1 blocks: R = [Bsharea || B1 || - - - || Bn], where Byhareq is a shared
subspace and each B; corresponds to a specific attribute. The mask network m(h) generates soft
weights that are applied to each block individually, allowing the model to adaptively activate rele-
vant attribute-specific subspaces; and (3) MSRSgqnx treats the basis matrix R € R™*4 a5 a flat set
of r independent basis vectors, without any explicit block structure. The mask network m(h) € R”
assigns a soft weight to each row of R, enabling control at the level of individual basis directions.
In our implementation, we adopt the MSRS s¢ribute configuration as the default setup for MSRS.
This choice offers a good balance between interpretability and control, allowing the model to mod-
ulate behavior based on attribute-specific subspaces. Results are reported in Table [3|across multiple
datasets and models. Training all attributes in the same space leads to suboptimal outcomes due
to interference between conflicting attribute objectives. For instance, Same Space performs worse
than both MSRS variants across nearly all metrics. MSRS mitigates such interference by decou-
pling subspaces and adaptively selecting them via m(h). The MSRSaqibute configuration, which
groups low-rank dimensions into attribute-aligned subspaces, strikes a good balance between pa-
rameter sharing and specialization. It consistently improves both truthfulness and bias mitigation
across models. The MSRSg,,k variant offers finer-grained control, further improving performance
on LLaMA3-8B-Instruct, suggesting enhanced truthfulness. However, on Qwen2-7B-Instruct, it
lags behind MSRS oyibue- This may due to that the optimal subspace granularity may vary across
model architectures, with certain models benefiting more from coarser subspace grouping. Results
across additional metrics are shown in Appendix [C](Table[7).

Validating the effectiveness of proposed dynamic intervention position selection mechanism.
We compare two settings: (1) the Last token, where steering is applied to the last token in the
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sequence, and (2) our proposed method, which applies steering at the dynamically selected Impor-
tant token. As shown in Table 4] dynamic token selection consistently outperforms fixed-position
steering across all models. For example, on LLaMA2-7B, MC1 improves from 26.41 to 29.10
and BBQ accuracy from 0.631 to 0.644. For HelpSteer metrics, dynamic token selection improves
helpfulness (2.70 to 3.12), coherence (2.68 to 3.06), and verbosity (2.73 to 2.47), leading to more
helpful, coherent, and informative responses. Similar gains are observed on LLaMA3-8B-Instruct
and Qwen2-7B-Instruct. These results validate that selecting the most semantically relevant token
for intervention mitigates inter-attribute interference and enables more effective attribute control.
Results across additional metrics are shown in Appendix [D](Table[9).

Determination of the optimal layer for steering interventions. We evaluate model performance
by injecting steering vectors at different transformer layers. For each candidate layer, we apply
interventions solely at that location, as shown in Figure[3] We observe that performance is highly
sensitive to the intervention layer. Lower layers exhibit weak steering capability, likely due to in-
sufficient semantic abstraction. Mid-to-upper layers generally yield better results, with layer 15
achieving the strongest overall performance. In contrast, deeper layers tend to overfit, leading to
performance degradation.

These findings align with prior observations (L1

4.00
et al} [2024), which suggest that optimal inter- | S =wm T c TR |
vention layers typically reside in the early to 5 7 -
middle layers of LLMs. Detailed results of dif- £ — SN N————
fenrent layer are provided in Appendix [E|(Ta- %, e
ble[9). To systematically select the intervention g 30
layer for multi-attribute subspace training, we gw/ 278
perform a grid search over held-out validation - 250
splits to identify the layer that best balances the 225
trade-offs between different attributes. Based : 0 B ayer ® »

ye!
MC Win Rate Helpfulness Verbosity

on this strategy, we adopt the layer for steering o

in all subsequent experiments. This targeted se-

lection ensures interventions are injected where Figure 3: Performance of interventions at differ-
they are most effective, thereby maximizing the ent transformer layers in LLaMA3-8B-Instruct.
utility of the learned multi-subspace representa- Mid-layer intervention consistently outperforms
tions. others.

Sorry Bench Coherence

6 CONCLUSION

We present Multi-Subspace Representation Steering (MSRS), a principled and effective framework
for multi-attribute behavior control in LLMs. MSRS addresses key limitations of prior methods
by introducing attribute-specific subspaces with SVD-guided dimensionality, a shared subspace to
capture cross-attribute correlations, and a dynamic token selection mechanism for precise inter-
vention. By integrating these components, MSRS mitigates steering conflicts and improves con-
trollability across diverse attributes such as truthfulness, bias, instruction following, refusal, and
generation quality. Extensive experiments demonstrate that MSRS consistently outperforms exist-
ing approaches in both task-specific and general-purpose settings, offering a scalable and robust
solution for reliable and aligned language generation.
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A IMPLEMENTATION DETAILS

A.1 Algorithm Figure [Tb| illustrates the overall structure of MSRS, which integrates shared and
attribute-specific subspaces for precise and disentangled multi-attribute control. To complement
this, we present the detailed training algorithm in Algorithm I}

The MSRS training process begins by computing activation statistics from each attribute-specific
dataset D;, aggregating token representations across examples to form mean activations 7;. These
activations are used to extract a shared subspace Bghareq Via singular value decomposition (SVD)
over concatenated attribute activations, capturing the dominant, overlapping directions.

Next, we derive private subspaces B; for each attribute ¢ by removing the shared components from
their individual activations, followed by a second SVD on the residuals. The final aligned subspace
Salign is constructed by concatenating the shared and private bases.

Training proceeds by optimizing the steerable representation function ®; ,,(h; R, W, b, m), applied
to token representations at a selected layer [ and position p. Once the intervention is applied, the
resulting representation is passed through a Softmax function, which normalizes the output to pro-
duce a probability distribution over the possible classes. The Softmax function converts the raw
scores (logits) produced by the intervention into a range between 0 and 1, ensuring that the sum of
the outputs is equal to 1, representing the predicted class probabilities.The predicted probabilities
are then compared to the ground truth labels y using Cross-Entropy loss. Cross-Entropy measures
the difference between the predicted probabilities (after applying Softmax) and the true label distri-
bution. It quantifies the performance of the model by penalizing the difference, with the objective
of minimizing this loss during training. Finally, the computed cross-entropy loss is assigned as the
task loss Lk, which is minimized through the optimization process. This ensures that the steer-
able representation function ®; ,,(h; R, W, b, m) is optimized to produce more accurate predictions
in subsequent tasks.

The total loss function £ combines the task loss L, with two regularization terms. The first term
regularizes the mask network m(h), encouraging it to stay close to a prior mask 1o through the
lo-norm term Aq||m(h) — Myprior||3. The second term enforces that the learned representation R
aligns with a reference matrix Syjign by minimizing the cosine dissimilarity, controlled by A2 Liign,
where:

<R7 Salign>

Lajign =1 — 7o
¢ [[Bl|2| Saignll2

The hyperparameters A; and A, balance the task loss and the regularization terms, ensuring that the

model optimizes both task performance and alignment with the reference structure.

This procedure ensures that the learned steering function preserves attribute disentanglement, sup-
ports subspace coordination, and enables adaptive attribute combination. It ultimately yields a robust
steering model capable of controlling multiple behavior dimensions in LLMs with minimal interfer-
ence.

A.2 Datasets and Metircs We provide detailed descriptions of the datasets and evaluation metrics
used in our experiments to assess multi-attribute steering performance.

TruthfulQA TruthfulQA (Lin et al.l [2022) evaluates a model’s ability to produce truthful and
informative responses. We report:

MC1 (Single-true): Accuracy in selecting the single correct answer (highest log-
probability among 4-5 candidates).

MC2 (Multi-true): Normalized probability assigned to all true reference answers.

BLEURT, BLEU, and ROUGE: Generation-level similarity scores, computed as the dif-
ference between the maximum similarity to any true answer and any false answer.

* GPT-judge and GPT-info: GPT-based classifiers trained to predict human ratings of truth-
fulness and informativeness.
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Algorithm 1 Multi-Subspace Representation Steering

Require: Datasets D, for attributes ¢ = 1,...,n, model M, token position p, layer [,
®; p(h; R, W, b, m), mprior € [0, 1]", regulation hyperparameters \q, A2, label y
Ensure: Steerlng model ®, ,(h; R,W,b, m)

1: Activation-wise Preparation
2: for each attribute : do
: _ 1
3: T; = W Z j h/j,,j
4: end for
5: Combine activations: 7. = [T1, ..., Tp]
6: Shared Subspace Extraction
7 7. = UV,
8: Bihared = U7 @ )T > Top r, directions
9: Private Subspace Extraction

10: for each attribute ¢ do

11 T =UXV,"

12: Hr(ezs) =T; — R;}:ared(RsharedTi)

13 HY =yOg@yOT

14: B; = U1( )T > Top r; directions
15: end for

16: Construct Aligned Subspace

—_
~

: Salign = [Bshared7 By,..., Bn]

: Optimize Representation Matrix

. Initialize R, W, b, subspace mask m(h)

for each training step do
@, ,(h) = h+ RT - diag(m(h)) - (Wh + b — Rh)
Lk = CrossEntropy (Softmax (®; ,(h)) , y)
Latign = 1 — AR Suin)

align [1RI[2 [ Sutign [l2

L = Lk + )\IHm(h) - mpriorH% + )\2£align
Update parameters R, W, b, m

: end for

: return ®; ,(h; R, W,b,m)

NN = =
MY

SRR
A

NN
~N QN

BBQ The Bias Benchmark for QA (BBQ) (Parrish et al.|2022) measures social bias in QA outputs
across nine social dimensions (e.g., race, gender). We report accuracy: whether the model selects
the correct answer.

AlpacaEval (Lietal.,2023b): Measures instruction-following ability via win rate against a strong
baseline (test-davinci-003), judged by GPT-3.5-Turbo.

Sorry-Bench (Xie et al.|[2025): Evaluates instruction refusal on harmful inputs using a fine-tuned
expert model (Mistral-7B-Instruct-v0.2). We report refusal accuracy based on the model’s ability to
reject malicious or unethical instructions.

HelpSteer (Wang et al. [2023) is a human-aligned benchmark for evaluating model helpfulness.
Each response is rated by GPT-3.5-Turbo across:

* Helpfulness: Relevance and utility of the response.
* Coherence: Logical consistency and fluency.

* Verbosity: Appropriateness of response length.

Scores range from 0 (poor) to 4 (excellent), and we report the average for each dimension.

General Benchmarks. To verify that steering does not impair general capabilities, we evaluate on
standard NLP tasks:
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* HellaSwag (Zellers et al.,[2019): commonsense inference; metric: accuracy.

* RACE (Lai et al., |2017): reading comprehension; metric: accuracy.

* OpenBookQA (Mihaylov et al.,|2018)): elementary science QA; metric: accuracy.
MMLU (Hendrycks et al, [2020) (Massive Multitask Language Understanding) is a challenging
benchmark designed to evaluate a model’s world knowledge and problem-solving ability under
zero-shot and few-shot settings. It comprises 15,908 multiple-choice questions spanning 57 di-
verse subjects, including STEM, humanities, social sciences, and professional disciplines such as

law and ethics. The tasks vary in difficulty from elementary to advanced levels, making MMLU an
ideal benchmark for identifying model weaknesses across both general and specialized domains.

Each subject contains at least 100 test questions, exceeding the length of most human exams. The
dataset is split into a few-shot development set (5 questions per subject), a validation set (1,540
questions), and a test set (14,079 questions). The evaluation metric is average accuracy across all
subjects.

GLUE (Wang et al.,[2018)) (General Language Understanding Evaluation) is a widely used bench-
mark for evaluating general-purpose language understanding. It consists of nine diverse NLP tasks
that span a range of linguistic phenomena, including sentiment analysis, paraphrase detection, tex-
tual entailment, and question answering. These tasks collectively assess a model’s ability to perform
natural language understanding in varied contexts.

The included tasks are:

MNLI (Multi-Genre Natural Language Inference): Predict entailment, contradiction, or neutrality
between premise and hypothesis across multiple domains.

QNLI (Question Natural Language Inference): Convert question answering into an entailment task.
QQP (Quora Question Pairs): Detect if two questions from Quora have the same meaning.

SST-2 (Stanford Sentiment Treebank): Classify sentiment in movie reviews as positive or negative.
CoLA (Corpus of Linguistic Acceptability): Judge grammatical acceptability of a sentence.

STS-B (Semantic Textual Similarity Benchmark): Score sentence pairs on semantic similarity.
MRPC (Microsoft Research Paraphrase Corpus): Determine if two sentences are paraphrases.
RTE (Recognizing Textual Entailment): Binary entailment classification from multiple datasets.

WNLI (Winograd NLI): Resolve coreference in complex pronoun cases.

B GENERAL CAPABILITIES OF MSRS

Method Math_Health Physics Business  Biology Chemisity _ CS__ Economics Eng.  Philosophy Other History Geog. Politics Psych. Culture Law
LLaMA3-8B-Instruct  0.430  0.697 0.533 0.819 0.791 0.502 0.629 0.675 0.641 0.567 0.694 0.778 0.848 0.796 0.764 0.816 0.516
+1TI 0371 0597 0450 0703 0685 0472 0476 0566 0517 048 0616 0.624 0732 0667 0653 0738 0393
+MTL-LoRA 0365 0587 0477 0769  0.687 0429 0534 0547 0503 0523 0547 0703 0737 0698 0.690 0.687 0432
+CAA 0436 0.695 0545 0828 0786 0488 0638  0.675  0.676 0566 0689 0772 0843 0787 0768 0852 0513
+Ours 0567 0714 0642 0854 0846 0578 0648 0759 0759  0.617 0761 0809 0.889 0810 0814 0850 0.563
Qwen2-7B-Instruct 0.567  0.712 0.630 0.863 0.844 0.574 0.650 0.757 0.738 0.594 0.754 0.801 0.874 0.813 0.803 0.825 0.557
+MTL-LoRA 0548 0710 0628 0838  0.841 0571 0651 0727 0745 0592 0739 0791 0874 0818 0799 0822 0554
+CAA 0568 0714 0639 0854 0850 0578 0653 0760 0759 0613 0758 0815 0884 0815 0813 0852 0561
+Ours 0567 0715 0642 0856  0.846 0578 0648 0759 0762  0.617 0761 0809 0.889 0810 0814 0851 0.563
Mistral-7b-v0.3 0387 0.658 0.475 0.766 0.742 0.492 0.587 0.545 0.614 0.567 0.682 0.761 0.773 0.776 0.737 0.771 0.503
+MTL-LoRA 0318 0573 0411 0689 0637 0386 0529 0476 0462 0466  0.621 0.648 0692 0654 0617 0687 0445
+CAA 0388 0659 0473 0765 0742 0482 0595 0585 0600 0570  0.685 0760 0771 0768 0729 0774 0497
+Ours 0365 0.687 0477 0769  0.687 0429 0534 0547 0503 0523 0547 0703 0737 0698 0790 0787  0.532

Table 5: MMLU per-task performance on different methods. The best result is highlighted in bold,
and the second-best is underlined.

B.1 PERFORMANCE ON MMLU BENCHMARK

This section provides a comprehensive evaluation of MSRS on the Massive Multitask Language
Understanding (MMLU) benchmark, assessing its ability to maintain and enhance general language
capabilities across diverse domains. The MMLU benchmark, comprising 57 tasks across 17 sub-
jects, serves as a rigorous testbed for evaluating model robustness beyond attribute-specific steering.
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We compare MSRS against baseline ITI, MTL-LoRA, and CAA—on three base models: LLaMA3-
8B-Instruct, Qwen2-7B-Instruct, and Mistral-7b-v0.3. Table [5| summarizes the per-subject perfor-
mance of MSRS and baselines on the MMLU benchmark. The results reveal distinct patterns in
how each method impacts general capabilities, with MSRS demonstrating superior consistency and
enhancement over baselines.

MSRS enhances or preserves performance across subjects. On LLaMA3-8B-Instruct, MSRS
achieves the highest accuracy in 14 out of 17 subjects, with significant gains in STEM fields such as
mathematics (0.567 vs. 0.430 for the base model), physics (0.642 vs. 0.533), and chemistry (0.578
vs. 0.502). These improvements underscore MSRS’s ability to bolster reasoning and knowledge re-
tention in technically demanding domains. In humanities and social sciences, such as history (0.809
vs. 0.778) and psychology (0.814 vs. 0.764), MSRS also outperforms the base model, indicating
broad applicability. For Qwen2-7B-Instruct, MSRS matches or exceeds the base model’s perfor-
mance in most subjects, with notable improvements in geography (0.889 vs. 0.874) and psychology
(0.814 vs. 0.803). These gains, though modest, highlight MSRS’s stability across high-performing
base models, preserving their strong initial capabilities while enabling targeted enhancements. On
Mistral-7b-v0.3, MSRS delivers substantial uplifts in subjects like psychology (0.790 vs. 0.737) and
law (0.532 vs. 0.503), despite the base model’s lower baseline performance. However, in mathemat-
ics (0.365 vs. 0.387), MSRS slightly underperforms, suggesting potential limitations in enhancing
weaker base models in certain domains.

Baseline methods reveal trade-offs. ITI consistently degrades performance across most subjects
due to its focus on truthfulness. On LLaMA3-8B-Instruct, ITI drops accuracy in mathematics to
0.371 (vs. 0.430) and computer science to 0.476 (vs. 0.629), reflecting a significant loss in general
reasoning and knowledge. Similar declines are observed across all models, confirming ITI’s unsuit-
ability for preserving broad capabilities. MTL-LoRA also exhibits reduced performance, particu-
larly in STEM subjects. For Mistral-7b-v0.3, accuracy in mathematics falls to 0.318 (vs. 0.387) and
chemistry to 0.386 (vs. 0.492). On LLaMA3-8B-Instruct, declines are evident in economics (0.547
vs. 0.675) and engineering (0.503 vs. 0.641). These results suggest that MTL-LoRA’s multi-task
fine-tuning overfits to specific tasks, compromising the model’s general knowledge base. CAA per-
forms closer to the base models but rarely surpasses them. On Qwen2-7B-Instruct, CAA achieves
comparable scores (e.g., 0.567 in mathematics, 0.854 in business) but trails MSRS in geography
(0.884 vs. 0.889) and psychology (0.813 vs. 0.814). On Mistral-7b-v0.3, CAA maintains baseline
levels (e.g., 0.774 in culture) without the consistent improvements seen in MSRS, indicating limited
generalization beyond attribute steering.

The experimental results affirm that MSRS excels in maintaining and often enhancing general NLP
capabilities across the MMLU benchmark, outperforming baseline methods in both consistency and
performance. Unlike ITI and MTL-LoRA, which sacrifice broad knowledge for attribute-specific
gains, and CAA, which offers limited improvement, MSRS achieves a better balance between tar-
geted steering and general understanding.

B.2 PERFORMANCE ON GLUE BENCHMARK

In this section, we assess the performance of MSRS on the GLUE benchmark, a widely-used suite of
tasks designed to evaluate natural language understanding capabilities. We evaluate on GLUE tasks
including SST-2 (sentiment analysis), STS-B (semantic similarity), QNLI (question-answering),
CoLA (linguistic acceptability), QQP (paraphrase detection), and RTE (textual entailment). We
compare MSRS against two baseline methods: CAA and ReFT, across three base models: LLaMA3-
8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B-v0.3. Table[6] provides a comprehensive summary
of the performance across all methods and models on the GLUE benchmark. MSRS demonstrates
consistent improvements over the base models and often outperforms the baseline methods, show-
casing its robustness across diverse linguistic tasks.

MSRS outperforms baselines across GLUE tasks. For LLaMA3-8B-Instruct, MSRS achieves an
average score of 0.7748, surpassing the base model (0.7257), CAA (0.7384), and ReFT (0.7569).
It excels particularly in SST-2 (0.9799) and QNLI (0.8097), highlighting its strengths in sentiment
classification and reasoning tasks. Additionally, MSRS improves RTE (0.6912) compared to CAA
(0.6701) and ReFT (0.6577). On Qwen2-7B-Instruct, MSRS records an average score of 0.8322,
slightly better than ReFT (0.8300) and notably higher than CAA (0.7701). It achieves top perfor-
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Model / Method SST-2  STS-B  QNLI CoLA  QQP RTE Avg.
LLaMA3-8B-Inst. 0.9471 0.5266 0.7208 0.8279 0.6426 0.6897 0.7257

+ CAA 09641 0.5743 0.7571 0.8317 0.6336 0.6701 0.7384
+ ReFT 0.9585 0.6662 0.8018 0.8185 0.6385 0.6577 0.7569
+ Ours 0.9799 0.6890 0.8097 0.8289 0.6501 0.6912 0.7748
Qwen2-7B-Inst. 0.9231 0.7821 0.8228 0.7500 0.8157 0.8602 0.8256
+ CAA 0.9601 0.6342 0.8070 0.8317 0.6336 0.6701 0.7701
+ ReFT 0.8750 0.7404 0.8637 0.7931 0.8227 0.8498 0.8300
+ Ours 0.8850 0.7311 0.8675 0.8210 0.8672 0.8577 0.8322
Mistral-7B-v0.3 0.8625 0.8313 0.4941 0.7731 0.7695 0.3548 0.6808
+ CAA 0.8671 0.8357 0.3225 0.8106 0.7727 0.3225 0.6551
+ ReFT 0.8249 0.7524 0.5401 0.8208 0.6398 0.5413 0.6927
+ Ours 0.8372 0.7972 0.5712 0.8452 0.6102 0.6153 0.7066

Table 6: Performance on GLUE benchmark tasks with different methods. The best result is high-
lighted in bold, and the second-best is underlined.

mance in QNLI (0.8675) and QQP (0.8672), demonstrating consistency across tasks, even though it
slightly trails ReFT in SST-2 (0.8850 vs. 0.8750). With Mistral-7B-v0.3, MSRS attains an average
score of 0.7066, outperforming the base model (0.6808), CAA (0.6551), and ReFT (0.6927). It
shows significant gains in CoL A (0.8208) and RTE (0.6153), where baselines struggle (e.g., CAA’s
RTE: 0.3225).

Baseline methods show variability. CAA tends to improve specific tasks but lacks generalization.
For instance, on LLaMA3-8B-Instruct, it boosts SST-2 (0.9641) but drops in RTE (0.6701). On
Mistral-7B-v0.3, CAA severely underperforms in QNLI (0.3225) and RTE (0.3225). ReFT achieves
competitive results in some areas but is inconsistent. On Qwen2-7B-Instruct, it excels in QNLI
(0.8637) but lags in SST-2 (0.8750). For Mistral-7B-v0.3, ReFT improves CoLA (0.8452) yet strug-
gles with QQP (0.6398).

The GLUE benchmark results underscore the effectiveness of MSRS in enhancing language under-
standing across a range of tasks. MSRS consistently achieves the highest average scores across all
three models, LLaMA3-8B-Instruct (0.7748), Qwen2-7B-Instruct (0.8322), and Mistral-7B-v0.3,
outperforming both CAA and ReFT. Its shared subspace mechanism enables MSRS to generalize
effectively, balancing task-specific improvements with broad linguistic competence.

C ADAPTIVE SUBSPACE SELECTING

This section presents an in-depth evaluation of the adaptive subspace selecting mechanism in
MSRS. We assess the effectiveness of three subspace training strategies. (1) Same Space, where
all attributes share a single subspace; (2) MSRS awribute, Where a mask network adaptively weights
attribute-specific subspaces; and (3) MSRSg.nk, where the mask network weights individual low-
rank dimensions. Table [7| summarizes the performance of these strategies on TruthfulQA, BBQ,
Alpaca, Refusal, and HelpSteer datasets, evaluated with LLaMA3-8B-Instruct, Qwen2-7B-Instruct,
and Mistral-7B-v0.3 models. The analysis highlights the limitations of the Same Space approach
and the advantages of adaptive subspace mechanisms.

Limitations of same space training. When all attributes are trained in a shared subspace, per-
formance suffers due to interference between conflicting attribute objectives. For example, on
LLaMA3-8B-Instruct, Same Space achieves an MC1 score of 29.58 on TruthfulQA, compared to
32.52 for MSRS Awribute and 33.50 for MSRSg,nk. Similarly, on Qwen2-7B-Instruct, it records a
Sorry-bench score of 0.422, lagging behind MSRS s¢ibute at 0.446. This suggests that a single sub-
space struggles to accommodate diverse steering directions, resulting in suboptimal optimization.

Advantages of adaptive subspace selection. The MSRS variants address this interference by de-
coupling subspaces and applying adaptive weighting through the mask network m(h). MSRS ayyibute:
By grouping low-rank dimensions into attribute-specific subspaces, this strategy balances parame-
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Method TruthfulQA BBQ  Alpaca Refusal HelpSteer

MCI MC2 BLEU BLEURT Acc WinRate Sorry-Bench Help. Coher. Verb.
LLaMA3-8B-Instruct  29.58 48.43  49.63 57.88 0.608 0.12 0.491 3.78 3.91 2.33
Same Space 29.58 49.51 52.08 64.06 0.637 0.30 0.451 3.87 3.89 2.38
MSRSattribute 3252 5255 52.57 68.46 0.627 0.36 0.529 3.88 396 2.24
MSRSyank 33.50 52.74 5232 66.75 0.646 0.35 0.527 3.89 3.95 2.28
Qwen2-7B-Instruct 26.38 4541 49.63 65.28 0.638 0.12 0.384 3.51 3.83 2.28
Same Space 29.83 48.69 52.57 71.15 0.637 0.434 0.422 3.63 3.78 2.38
MSRSatirivute 34.72 5327 53.10 74.90 0.642 0.451 0.446 3.64 3.81 2.20
MSRSrank 26.41 47.65 49.88 64.30 0.635 0.442 0.439 3.76 382 217
Mistral-7B-v0.3 18.83 36.54 41.56 54.52 0.614 0.14 0.632 3.75 392 236
Same Space 3032 49.69 49.39 66.01 0.615 0.33 0.669 3.82 3.85 2.33
MSRSattrivute 30.07 52.62 50.61 71.39 0.644 0.38 0.693 3.82 393 227
MSRSank 28.36 49.94 47.19 69.19 0.631 0.39 0.673 3.76 387  2.26

Table 7: Comparison of steering subspace training strategies across datasets. The best result is
highlighted in bold.

ter sharing and specialization. On LLaMA3-8B-Instruct, it improves MCI1 to 32.52 and BLEU to
52.57, while on Qwen2-7B-Instruct, it achieves an MC1 of 34.72 and BLEURT of 74.90, consis-
tently surpassing Same Space. MSRSgqnk: This finer-grained approach weights each dimension
individually, excelling on LLaMA3-8B-Instruct with an MC1 of 33.50 and MC2 of 52.74, indicat-
ing superior truthfulness. However, on Qwen2-7B-Instruct, it underperforms MSRS yipue (MC1:
26.41 vs. 34.72), suggesting that excessive granularity may not always be beneficial.

Impact of subspace granularity. The optimal granularity varies by model. For LLaMA3-8B-
Instruct, MSRSgank’s dimension-level control yields slight improvements over MSRS ayribute, par-
ticularly in Truthful QA metrics. In contrast, MSRS aibute OUtperforms MSRSgax on Qwen2-7B-
Instruct and Mistral-7B-v0.3, suggesting that coarser subspace grouping aligns better with certain
model architectures.

D INTERVENTION POSITION EXPERIMENTS

Method / Position TruthfulQA BBQ Alpaca Refusal HelpSteer

MC1  MC2 BLEU rougel BLEURT Judge Info acc Win Rate  Sorry-Bench  Help. Coher.  Verb.
LLaMA2-7B
Last Token 2641 42.88 48.66 46.45 58.19 31.05 67.48 0.631 0.12 0.579 2.70 2.68 2.73
Important Token 29.10 48.60 49.88  50.37 60.15 28.85 7579 0.644 0.13 0.583 3.12 3.06 247
LLaMA3-8B-Instruct
Last Token 33.50 5274 5232 5648 66.75 24.69 76.77 0.646 0.36 0.529 3.88 3.96 2.24
Important Token 3371 5632 5271 5822 67.51 29.21 78.13  0.655 0.32 0.511 3.85 3.95 1.99
Qwen2-7B-Instruct
Last Token 3472 5327 51.10 5550 70.90 28.85 8557 0.6421 0.45 0.446 3.70 382 217
Important Token 36.12 55.63 5217 57.25 70.93 3141 84.09 0.657 0.42 0.448 3.69 383  2.06

Table 8: Comparison of Last token vs. Important token intervention. The best result is highlighted
in bold.

This section provides a detailed evaluation of the dynamic intervention position selection mecha-
nism. We compare two intervention strategies: (1) Last Token, where steering is applied to the final
token in the sequence, and (2) Important Token, where steering is dynamically applied to the token
most relevant to the target attribute, as identified by subspace projections. The experimental results,
presented in Table [§] span multiple datasets (TruthfulQA, BBQ, Alpaca, Refusal, and HelpSteer)
and models (LLaMA2-7B, LLaMA3-8B-Instruct, and Qwen2-7B-Instruct). Below, we analyze the
effectiveness of the Important Token strategy and its advantages over the Last Token baseline.

LLaMA2-7B: The Important Token strategy yields notable improvements over Last Token, with
MC1 increasing from 26.41 to 29.10, BLEU from 48.66 to 49.88, and BBQ accuracy from 0.631 to
0.644. On HelpSteer, it enhances Helpfulness (2.70 to 3.12), Coherence (2.68 to 3.06), and Verbosity
(2.73 to 2.47), reflecting more guided and informative outputs.

LLaMA3-8B-Instruct: The Important Token approach boosts MC2 from 52.74 to 56.32 and rougel
from 56.48 to 58.22, alongside a BBQ accuracy increase from 0.6457 to 0.6553. HelpSteer Verbosity
improves from 2.24 to 1.99, though Helpfulness and Coherence remain stable, suggesting robust
baseline performance.
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Qwen2-7B-Instruct: Gains are observed in MC1 (34.72 to 36.12), BLEU (51.10 to 52.17), and BBQ
accuracy (0.6421 to 0.6572). HelpSteer Verbosity rises from 2.17 to 2.06, with minimal changes in
Helpfulness and Coherence, indicating consistent but moderate enhancements.

The experimental results validate the effectiveness of the Dynamic Intervention Position Selection
mechanism. By targeting the most semantically relevant tokens, the Important Token strategy consis-
tently outperforms the Last Token baseline across diverse datasets and models. These improvements
are evident in enhanced truthfulness, reduced bias, and higher-quality generations, alongside greater
interpretability of model behavior.

E STEERING LAYER SELECTION

Model / Layer Truthful QA BBQ  Alpaca Refusal HelpSteer
MC1 MC2 BLEU ROUGE! BLEURT Judge Info  Acc WinRate Sorry-Bench Help. Coher. Verb.

LLaMA3-8B-Instruct

3 29.83 4895 52.08 55.26 65.28 3227 9120 0.631 0.27 0.483 3.78 3.81 2.37
9 33.01 56.39 49.88 55.26 68.22 22.00 82.89 0.620 0.34 0.517 3.79 3.85 2.28
15 33.50 5274 5232 56.48 66.75 24.69 7677 0.646 0.36 0.529 388 396 224
21 27.94 4721 5218 55.02 65.45 26.31 7226 0.632 0.31 0.462 3.87 387 236
27 26.86 49.24 49.83 53.12 63.77 2523 71.85 0.622 0.18 0.491 3.68 3.91 2.33
Qwen2-7B-Instruct

3 3632 4439 47.79 54.55 66.81 20.82  75.77 0.605 0.32 0.419 3.72 3.81 2.34
9 3641 47.65 4941 58.03 63.80 2543  87.31 0.605 0.44 0.449 3.64 3.84 2.25
15 3472 5327 5310 55.50 74.90 28.85 9095 0.642 0.45 0.446 3.76 382 217
21 33.67 50.79 51.87 53.28 73.41 3141 7718 0.631 0.38 0.413 3.63 376 227
27 2471 4044 49.83 53.30 69.47 36.62 7476 0.614 0.16 0.368 3.61 3.61 2.24
Mistral-7B-v0.3

3 27.06 4694 48.09 54.26 68.49 44.03 6795 0.631 0.36 0.622 3.86 3.71 2.32
9 30.82 49.06 47.79 53.25 69.01 51.07 79.53 0.624 0.32 0.679 3.82 387 231
15 30.07 52.62 50.61 57.95 71.39 4570 8044 0.644 0.38 0.693 382 393 227
21 31.32 51.69 4859 57.58 63.87 50.37 7857 0.619 0.36 0.669 3.76 3.88 223
27 2483 36.31 4576 48.64 53.52 44.86 84.03 0.614 0.25 0.619 3.71 3.72 2.35

Table 9: Performance of interventions at different layers. The best result is highlighted in bold.

This section elaborates on the layer-wise ablation study conducted to identify the optimal trans-
former layer for injecting steering vectors in MSRS. We assess model performance by applying
interventions at specific layers ({3, 9, 15, 21, 27}) across multiple datasets and models. The analy-
sis highlights the sensitivity of steering effectiveness to layer selection and underscores the impor-
tance of optimizing this parameter. Table [9] summarizes the performance metrics for interventions
at different layers, evaluated on TruthfulQA, BBQ, Alpaca, Refusal, and HelpSteer datasets using
LLaMA3-8B-Instruct, Qwen2-7B-Instruct, and Mistral-7B-v0.3 models.

Performance Trends Across Layers Lower Layers (e.g., Layer 3): Interventions at lower layers
exhibit limited steering capability. For example, LLaMA3-8B-Instruct at Layer 3 achieves an MC1
score of 29.83 and BBQ accuracy of 0.631, underperforming compared to higher layers. This can be
attributed to the early layers’ focus on syntactic rather than semantic representations, limiting their
effectiveness for attribute control.

Mid-to-Upper Layers (e.g., Layer 15): Optimal performance is consistently observed at mid-to-
upper layers, with Layer 15 standing out across all models. For LLaMA3-8B-Instruct, Layer 15
yields an MC1 of 33.50, BLEU of 52.32, and HelpSteer Helpfulness of 3.88. Similarly, Qwen2-
7B-Instruct at Layer 15 achieves an MC1 of 34.72, BLEURT of 74.90, and BBQ accuracy of 0.642.
These results suggest that mid-layers strike an effective balance between semantic abstraction and
model generalization.

Deeper Layers (e.g., Layer 27): Performance degrades at deeper layers, likely due to overfitting
or overly specialized representations. For instance, Mistral-7B-v0.3 at Layer 27 records an MC1 of
24.83 and BLEU of 45.76, indicating a reduced capacity to generalize effectively when interventions
occur late in the transformer stack.

Layer Selection via Grid Search To determine the optimal intervention layer for multi-attribute
subspace training, we employ a grid search over held-out validation splits. This method systemati-
cally evaluates performance across layers and attributes, identifying Layer 15 as the most effective
choice for balancing trade-offs. This targeted selection is adopted in all subsequent experiments to
ensure that steering interventions maximize the utility of the learned multi-subspace representations.
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Evaluating the benefit of aligning learned ~Sfethoa ~— MCT MCZ BLEU ROUGE-T BLEURT Tnfo
steering subspaces with SVD-derived pri- LLaMA2 1858 3525 3837  30.18 5265  353.19

. +ReFT 2003 3693 4474 4792 5599 4132
ors. We conduct an ablation study on  iRecFT+SVD 1858 3897 4645  48.66 5892 66.99
LLaMA2-7B using three configurations: (1) _tReFT+Align 2494 4141 5110 5159 66.50 7164

standard ReFT, which learns a single steering

Subspace without incorporating prior struc- Table 10: Ablation study on multi—subspace align—
ture; (2) Naive SVD-based subspace con- ment strategies on Truthful QA.

catenation, which constructs a fixed basis

matrix by directly concatenating attribute-relevant directions extracted via singular value decom-
position (SVD). Specifically, for each attribute, we apply SVD on its activation representations to
obtain a low-rank subspace, and then combine all attribute-specific bases with a shared subspace
into a single matrix (3) Our proposed subspace alignment strategy not only leverages SVD priors
Mprior fOr initial subspace selection, but also explicitly aligns the learned subspace usage with these
priors through two mechanisms: a mask regularization loss L, and a directional alignment loss
Laiign. This enables adaptive, interpretable, and task-aware control over attribute-specific represen-
tations. The results are shown in Table [I0]

Our proposed method (+ReFT+A1l1ign) significantly outperforms both baselines across all metrics.
It achieves a BLEU score of 51.10 and BLEURT of 66.50, representing clear improvements over
both ReFT and SVD-only approaches. Notably, the MC1 score increases to 24.94 | more than 3
points over ReFT, indicating that aligning learned masks and subspaces with SVD priors enhances
attribute-specific steering capacity. The Info score, which reflects informativeness in open-ended
generation, also peaks at 71.64, supporting the conclusion that SVD-guided alignment enables more
effective and disentangled attribute control. These results underscore the importance of explicitly
incorporating structural priors during training, with SVD initialization serving as an effective foun-
dation for guiding subspace learning.
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