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This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion
control speech synthesis within a unified framework. The goal of this work is to address longstanding
challenges in achieving highly expressive, controllable, and natural speech generation that faithfully
preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an
effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling inde-
pendent manipulation of speaker identity and emotional style, as well as rotational emotional embedding
integration method for smooth emotion control. To support comprehensive training and evaluation,
we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin
speech from six professional speakers across seven emotional categories. Extensive experiments demon-
strate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective
metrics. Comprehensive evaluations and analysis were conducted, results show that Marco-Voice delivers
competitive performance in terms of speech clarity and emotional richness, representing a substantial
advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at
https://github.com/AIDC-Al/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS
respectively.

1. Introduction

The field of text-to-speech (TTS) synthesis has witnessed remarkable progress in recent years, driven
by advances in deep learning and the availability of large-scale speech datasets [Zeng et al., 2020,
Kim et al., 2021, Shen et al., 2023]. Modern TTS systems now approach or even surpass human-level
performance in terms of intelligibility and naturalness, making them indispensable in a wide range of
applications, including virtual assistants, audiobook narration, accessibility tools, and entertainment
[Li et al., 2024b, Du et al., 2024a,b].

Despite these achievements, truly human-like speech synthesis remains an open challenge [Li
et al., 2024a]. In natural communication, human speech is characterized by a rich interplay of speaker
identity, prosodic style (intonation, rhythm, emphasis), and nuanced emotional expression [Tan et al.,
2021, Zhang et al., 2023, Barakat et al., 2024]. Replicating this diversity and flexibility in synthetic
speech requires effective modeling and disentanglement of these factors [Wang et al., 2024, Meng
et al., 2025]. The motivation for this work stems from three persistent challenges in the field: 1)
Entanglement of Emotion and Speaking Style: Many TTS models intertwine speaker-specific emotion
with prosodic style [Chen et al., 2024c], making it difficult to independently control voice identity and
manner of speaking. This limitation restricts the personalization and expressiveness of synthesized
voices, particularly in applications that require voice cloning or style transfer. 2) Balancing Prosody
and Emotion Consistency: Achieving both natural prosody and consistent, expressive emotional
content is difficult [Wu et al., 2019, Li et al., 2022]. Systems often excel at one aspect at the expense
of the other, resulting in speech that sounds either monotonic or emotionally incongruent [Li et al.,
2024c]. 3) Limitations of Conventional Emotion Modeling: Most existing TTS systems represent
emotions using discrete categories (e.g., happy, sad, angry), which fails to capture the continuous
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and multidimensional nature of real-world emotional expression. Moreover, these methods often
struggle to maintain high speaker similarity when synthesizing emotional speech, especially in voice
cloning scenarios [Li et al., 2021, Kansizoglou et al., 2022]. 4) Limited Availability of High-Quality
Emotional Speech Data: Existing emotional speech datasets often suffer from limited speaker diversity,
inconsistent recording conditions, or insufficient emotional coverage, particularly for non-English
languages [Tits et al., 2020, Zhou et al., 2022, Ma et al., 2024], which constrains the development
and evaluation of emotional TTS systems.

Existing solutions typically address these challenges by deploying separate modules for each
function, such as distinct encoders for speaker and emotion or post-hoc prosody adjustment [Park
et al., 2023, Jiang et al., 2024]. While modularization simplifies implementation, it often leads to weak
interactions among features and degrades the overall synthesis quality [Diatlova and Shutov, 2023,
Zhu et al., 2023, Choi et al., 2024]. For instance, the separation of speaker and emotion modules
may result in unnatural blending or loss of speaker identity during expressive speech synthesis.
Furthermore, the discrete treatment of emotions hinders the generation of subtle or mixed affective
states, which are common in natural conversations.

To address these limitations, we built Marco-Voice, a TTS system unified emotional speech
generation and voice cloning; and a emotional speech dataset named CSEMOTIONS. Our contributions
in this paper is of two main parts:

1. Marco-Voice Model:

* We develop a speaker-emotion disentanglement mechanism that separates speaker identity
from emotional expression, enabling independent control over voice cloning and emotional
style. We also proposed to employ in-batch contrastive learning to further disentangle speaker
identity with emotional style feature.

* We implement a rotational emotion embedding integration method to obtain emotional em-
beddings based on rotational distance from neutral embeddings. Finally, we introduce a
cross-attention mechanism that better integrates emotional information with linguistic content
throughout the generation process.

2. CSEMOTIONS Dataset:

* We construct CSEMOTIONS, a high-quality emotional speech dataset containing approximately
10 hours of Mandarin speech from ten professional native speakers (five male, five female), all
with extensive voice acting experience. The dataset covers seven distinct emotional categories.
All recordings were made in professional studios to ensure high audio quality and consistent
emotional expression.

* We also develop 100 evaluation prompts for each emotion class across both existing datasets
and CSEMOTIONS in English and Chinese, enabling thorough and standard assessment of
emotional synthesis performance across all supported emotion categories.

Marco-Voice combines these innovations to deliver expressive, natural, and highly controllable
speech synthesis. By integrating speaker identity, emotional style, and linguistic content within a single
framework, our system achieves superior speech quality and emotional richness while expanding the
potential applications of TTS technology in multilingual and interactive environments.
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Figure 1 | The overall architecture of our Marco-Voice system, incorporating speaker-emotion disen-
tanglement, in-batch contrastive learning.

2. Methodology

Our Marco-Voice system follows a clear pipeline: input text and reference speech are processed
through separate encoders, while speaker and emotion information are embedded as conditioning
signals. These features are fed into a language model that generates token representations. The
emotion embeddings then interact with the LM outputs through cross-attention before being passed
to a flow matching module, which generates high-quality expressive speech. The system incorporates
several key innovations including speaker-emotion disentanglement, contrastive emotion learning,
and adaptive cross-attention mechanisms.

2.1. System Architecture

The overall architecture of Marco-Voice consists of four main components: (1) input encoders that
process text and speech separately, (2) embedding modules that encode speaker identity and emotional
style, (3) a text-to-token language model that integrates linguistic and conditioning information, and
(4) a flow matching module that generates acoustic parameters for final speech synthesis. The system
is designed to handle multiple types of conditioning information while maintaining independent
control over different aspects of speech generation.

2.2. Rotational Emotion Embedding Integration

We use an emotion feature extractor module to extract emotion embeddings from speech. We
disentangle speaker-specific qualities and speaker-independent emotion representations by using
paired samples of emotional speech x{ and neutral speech x!' from the same speaker. These are encoded
using a pre-trained emotional encoder E, to obtain representations u; = E.(x{) and u! = E(x]").

We adopted the method intorduced by [Chen et al., 2024a] that hypothesizes that the difference
between these encodings captures a direction vector in the speaker embedding space corresponding
to the emotional content, while removing speaker identity:

e uf _u? (1)
v, = ——m
C -l
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We then aggregate over N such pairs to obtain a robust emotion embedding:

1 N
e=Nva 2)

For most cases, we find that single-shot (N = 10) suffices to produce high-quality emotion control.
The resulting emotion embedding e serves as a conditioning signal at multiple stages, allowing the
system to maintain emotional consistency from text processing through final speech generation.

2.3. Speaker-Emotion Disentanglement

We introduce a cross-orthogonal constraint to separate speaker identity from emotional expression.
Given input features, we obtained speaker embeddings s using encoders E; and E,:

S = Es(X) 3)

where x is the speech and the emotion embedding e is obtained in Equation. 2. Our implementation
computes the cross-orthogonality loss as follows. Given batch-wise speaker and emotion embeddings,
we calculate the dot-product matrix, normalize by their vector norms, and compute the squared
Frobenius norm. In addition, we calculate the average cosine similarity across all pairs in the batch,
also using the squared Frobenius norm. The total orthogonality loss is a weighted sum of both terms:

Let SeRP*P, EeREXP

Dot-Product Matrix: D = ES’

Norms: ng = ||E[l, ns=||S|| 4
Normalized Matrix: D = D/(ngnL)

Lore = ||D||% + |mean(cos_sim(E, S)) |12

where B is batch size, S and E consists of a batch of s and e, || - |r denotes the Frobenius norm,
and cos_sim(E, S) computes the cosine similarity between each emotion embedding and each speaker
embedding. During training, if batchwise pairwise computation is enabled, we average the absolute
dot product between each embedding and all opposing emotion embeddings in the batch, except
self-pairs; otherwise, we use the orthogonality loss as above. This constraint forces speaker and
emotion embeddings to be perpendicular in the feature space, enabling independent control over
voice identity and emotional expression.

2.4. In-Batch Contrastive Learning

To improve the quality of emotion representations, we employ in-batch contrastive learning [Gao
et al., 2021]. For each emotion embedding in a training batch, we encourage it to be dissimilar from
other emotion embeddings that represent different emotional states.

Concretely, during training, for each pair in the minibatch, the speaker and emotion embeddings
are projected and added, then, for all pairs (i, j) in the batch (i # j), we accumulate the absolute dot
products:

1
Leontrast = NN -1)/2 ; [(h;, e;)] )
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where h; is the sum of projected speaker and emotion embeddings for sample i, and e; is the
corresponding projected emotion embedding in the batch.

This batchwise contrastive learning encourages distinctiveness among emotion embeddings within
the batch and enhances the separation of emotion representations.

2.5. Conditional Flow Matching Module

The conditional flow matching module [Lipman et al., 2023, Tong et al., 2024, Du et al., 2024a]
processes transforms noise into speech parameters through a continuous flow, conditioned on all the
input features. Specifically, we used an additional cross-attention mechanism such that the emotion
embedding serves as the query (Q), and the acoustic token outputs from the language model serve as
the keys (K) and values (V):

Q= Wq(e)
K =Wi(hpy) 6)
V =W, (hym)

where hyy, is the linguistic/acoustic token sequence generated by LLM, and W, Wy, W, are learned
projections. Then we compute:

. QK"
hawn = Attention(Q, K, V) = softmax (—) % (7)
tt ( ) \/d_k

with optional masking for padding positions. The output dimensions and residual connections align
with the input token sequence, allowing the emotion query to dynamically modulate the linguistic
representations, thus enabling emotionally coherent speech synthesis.

The flow matching module takes the attended linguistic features h,,, along with speaker and
emotion conditions, to generate acoustic parameters. The module uses a combination of Transformer
and ResNet1D blocks to handle both sequential dependencies and local acoustic refinements:

h; = FlowMatch (hgn, hiy, €) (8)

This approach provides stable training while allowing flexible control over the generated speech
characteristics.

2.6. Training Objective

The overall training objective combines the main TTS loss with regularization terms for disentangle-
ment and contrastive learning:

-E = -£TTS + Aorrhl:orth + Acontrast-lzcontrast (9)

where Lrrs is the main speech synthesis loss, and the A terms control the relative importance
of each constraint. The main TTS loss includes reconstruction, spectral, adversarial, and duration
components to ensure high-quality speech generation.
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3. Experimental Setup

3.1. Datasets

We combine established public corpora with our newly developed proprietary dataset to ensure
diversity and robustness in our modeling.

Training Datasets

* ESD (Emotional Speech Dataset): ESD [Zhou et al., 2022] is a large-scale, high-quality
resource specifically designed for emotional voice conversion and synthesis. It comprises
approximately 29 hours of audio spanning five emotion categories (neutral, happy, angry, sad,
and surprise) and features 20 professional speakers (10 native English and 10 native Chinese).
Each speaker recorded 350 parallel utterances.

* CSEMOTIONS (Chinese Speech Emotions): To supplement existing public resources, we
constructed CSEMOTIONS, a proprietary emotional speech dataset. This corpus includes about
10 hours of Mandarin speech from ten professional native speakers (five male, five female), all
with extensive voice acting experience. CSEMOTIONS covers seven distinct emotional categories,
with each speaker reading a curated set of 100 Chinese and English prompts. All recordings
were made in professional studios to ensure high fidelity and expressive consistency.

Evaluation Datasets

* LibriTTS: For evaluation on English TTS and conversion tasks, we utilize LibriTTS [Zen et al.,
2019], a large-scale, multi-speaker speech corpus derived from public domain audiobooks. We
sample 400 prompts from LibriTTS.

* AISHELL-3: To assess Mandarin performance, we employ AISHELL-3 [Shi et al., 2021], a
multi-speaker Mandarin TTS dataset with approximately 85 hours of neutral speech from 218
native speakers. We select 400 prompts from AISHELL-3 for evaluation.

* CSEMOTIONS: To comprehensively evaluate emotional expressiveness, we construct 100
prompts for each emotional class (across both ESD and CSEMOTIONS) in both English and
Chinese as dedicated evaluation data. This allows for targeted assessment of emotional synthesis
and conversion across all supported emotion categories.

ESD and CSEMOTIONS serve as our primary training resources, providing rich emotional diversity.
LibriTTS and AISHELL-3 are employed for evaluation, with 400 prompts each used to benchmark
model performance in English and Mandarin, respectively. Additionally, emotion-specific evaluation is
conducted using the eval set of CSEMOTIONS - 100 prompts per emotional class, ensuring robust and
fine-grained assessment of emotional speech capabilities. All audio was preprocessed to a consistent
format (24/48kHz sampling rate, 16-bit depth) and normalized to control for volume variations.

3.2. Implementation Details

The model was implemented based on CosyVoicel [Du et al., 2024a] and trained on 8 NVIDIA A100
GPUs for approximately couple hours. We used the Adam optimizer with a learning rate of 1 x 107>
for Ilm part and 1 x 10~* for flow matching part and a cosine decay schedule. The batch size was
set to 32 per GPU. For the weighting factors in the loss function, we used A, = 0.1 and A,,, = 0.5.
These values were determined through a hyperparameter search on a validation set.
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3.3. Evaluation Metrics

We evaluated our system mainly based on human evaluation with additional automatic metrics for
analysis to address the challenges for evaluating emotional speech generation with voice cloning:

* Speaker similarity was measured using a pre-trained speaker model [Ravanelli et al., 2024,
Chen et al., 2024b] that computes cosine similarity between speaker embeddings.

* Emotional expressiveness was evaluated through human ratings on a 5-point Likert scale.

* Overall speech quality was assessed using mean opinion scores (MOS) from human listeners, as
well as objective metrics including Whisper-WER [Radford et al., 2022] and DNS-MOS.

4. Results and Analysis

To comprehensively assess the effectiveness of the proposed Marco-Voice system, which integrates
both voice cloning and emotional speech generation, we conduct evaluations targeting these two
core capabilities. Given the subjective nature of speech quality, speaker similarity, and emotional
expressiveness, we primarily rely on human evaluation, supplemented by automatic metrics where
appropriate. This approach ensures a robust and representative assessment of system performance in
both naturalness and controllability.

Human evaluations were conducted using a panel of native speakers who rated different systems
across several dimensions on a five-point Likert scale (higher is better). For speaker similarity, listeners
compared generated speech to reference samples from target speakers. For emotional expressiveness,
raters assessed the naturalness, clarity, and emotional content of synthesized utterances. In addition,
direct A/B preference tests were performed, where raters listened to paired samples and indicated
their preference for each pair. Each system was evaluated using the same set of prompts to ensure
fairness and comparability.

4.1. Voice Cloning Evaluation

Table 1 summarizes the results for voice cloning capabilities, including speech clarity, rhythm and
speaking speed, naturalness, overall satisfaction, and speaker similarity. Only systems supporting
voice cloning are included.

Speech Clarity Rhythm & Speed Naturalness Overall Satisfaction Speaker Similarity

CosyVoicel 3.000 3.175 3.225 2.825 0.700
CosyVoice2 3.770 4.090 3.150 3.330 0.605
Marco-Voice 4.545 4.290 4.205 4.430 0.8275

Table 1 | Human evaluation results for voice cloning systems. Higher scores indicate better perfor-
mance.

As shown in Table 1, Marco-Voice consistently outperforms existing voice cloning systems across
all evaluated dimensions. Notably, our system achieves the highest speaker similarity score (0.8275),
demonstrating its effectiveness in preserving speaker identity. Improvements in speech clarity, rhythm,
and overall satisfaction further highlight the advantages of our speaker-style disentanglement ap-
proach.
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4.2. Emotional Speech Generation Evaluation

Table 2 presents the evaluation results for systems supporting emotional speech generation, including
speech clarity, emotional expression, rhythm and speaking speed, naturalness, and overall satisfaction.

Speech Clarity Emotional Expression Rhythm & Speed Naturalness Overall Satisfaction
CosyVoice2 3.770 3.240 4.090 3.150 3.330
Marco-Voice 4.545 4.225 4.290 4.205 4.430

Table 2 | Human evaluation results for emotional speech generation. Higher scores indicate better
performance.

According to Table 2, Marco-Voice achieves the best performance in all evaluated aspects, espe-
cially in emotional expression (4.225) and overall satisfaction (4.430). These results validate the
effectiveness of our emotion modeling strategy, enabling more natural and expressive emotional
speech synthesis compared to CosyVoice2 [Du et al., 2024b].

4.3. Direct Comparison (A/B) Tests

In addition to rating-based evaluations, we conducted A/B preference tests in which listeners compared
pairs of samples from Marco-Voice and competing systems using the same prompts. The results,
presented in Table 3, show the percentage of times Marco-Voice was preferred.

Compared Model Marco-Voice Win Rate

CosyVoicel 60% (12/20)
CosyVoice2 65% (13/20)

Table 3 | A/B preference test results: percentage of times Marco-Voice was preferred in blind listening
tests.

Marco-Voice is consistently preferred over all baseline systems in direct listening comparisons,
indicating that listeners value the emotional expressiveness and speaker similarity of our system in
direct comparisons.

4.4. Analysis Studies

To further investigate the performance of the Marco-Voice system, we conducted detailed analysis
studies using objective metrics on both English (LibriTTS) and Mandarin (AISHELL) datasets. We
compared multiple versions of Marco-Voice including: v1 incorporates rotational emotion embeddings
as conditioning signals in both the LLM and flow matching module. v2 adds the cross-orthogonal
constraint to enforce speaker-emotion disentanglement, enabling independent control over voice
identity and emotional expression. v3 employs in-batch contrastive learning between emotion
and speaker embeddings. v4 uses a cross-attention mechanism between emotion embeddings and
language model tokens to ensure coherent emotion-text integration. The evaluation metrics are Word
Error Rate (WER), Speaker Similarity (SS, using both SpeechBrain and ERes2Net), deletion and
insertion errors (Del & Ins), substitution errors (Sub), and DNS-MOS scores for perceptual quality.

LibriTTS Results: Table 4 presents the results for the LibriTTS dataset. Across all Marco-Voice
versions, the WER remains low and comparable to the best-performing baseline (CosyVoicel), with
Marco-Voice-v4 achieving the lowest WER (11.4). Speaker similarity scores (both SS-speech brain
and SS-ERes2Net) for Marco-Voice variants are consistently higher than CosyVoice2 and on par with
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or slightly exceeding CosyVoicel. DNS-MOS scores for Marco-Voice models are also competitive,
indicating strong perceptual quality.

System CosyVoicel CosyVoicel* Marco-Voice-vl Marco-Voice-v2 Marco-Voice-v3 Marco-Voice-v4
WER | 12.1 58.4 12.4 12.5 12.0 11.4
SS (SpeechBrain) T 64.1 61.3 64.2 64.7 64.5 63.2
SS (ERes2Net) T 80.1 64.2 80.3 79.5 80.1 74.3
Del & Ins | 413 2437 387.0 398.0 415.0 395.0
Sub | 251 2040.0 251.0 286.0 251.0 242.0
DNS-MOS 1 3.899 3.879 3.926 3.900 3.923 3.860

Table 4 | Objective evaluation of speech recognition and synthesis quality on the LibriTTS dataset.
Metrics include word error rate (WER), speaker similarity (SS) using SpeechBrain and ERes2Net,
error counts (Del & Ins, Sub), and DNS-MOS for perceptual quality. Lower WER and error counts,
and higher SS and DNS-MOS indicate better performance.

System CosyVoicel CosyVoicel* Marco-Voice-vl Marco-Voice-v2 Marco-Voice-v3 Marco-Voice-v4
WER | 3.0 23.3 17.6 15.9 18.2 17.6
SS (SpeechBrain) T 10.7 10.6 11.0 10.9 10.5 10.4
SS (ERes2Net) T 73.5 54.5 73.8 73.2 73.7 67.6
Del & Ins | 11.0 170.0 212.0 211.0 212.0 218.0
Sub | 97.0 674.0 485.0 408.0 496.0 471.0
DNS-MOS 7 3.673 3.761 3.687 3.701 3.689 3.656

Table 5 | Objective evaluation of speech recognition and synthesis quality on the AISHELL dataset.
Metrics are as in Table 4. Results demonstrate the effectiveness of Marco-Voice models for Mandarin
emotional TTS, particularly in speaker similarity and perceptual quality. CosyVoicel* indicates that
we continue training the base model on the same dataset, which typically leads to degraded WER
performance and explains the higher WER observed in the Marco-Voice models.

AISHELL Results: Table 5 shows the results on AISHELL. Here, Marco-Voice variants generally
outperform CosyVoice2 in WER, though CosyVoicel achieves the lowest WER (3.0). Speaker similarity
(SS) and DNS-MOS values for Marco-Voice remain strong, with SS-ERes2Net showing clear superiority
over CosyVoice2. Notably, deletion and insertion errors are higher for Marco-Voice models, which can
be attributed to challenges in emotional prompt synthesis and the presence of vocalized pauses (e.g.,
“ah,” “um”) that are often included in expressive and emotional speech but are not always reflected in
text transcripts.

The observed WER values, while generally low, may appear elevated in some cases due to the
inclusion of vocalized fillers and interjections inherent in natural, emotional speech. These ele-
ments are frequent in emotional prompts and can increase WER even when the generated speech is
perceptually natural and expressive. Additionally, the complexity and variability of emotional text
prompts pose extra challenges for TTS systems, potentially leading to more substitution, deletion, and
insertion errors. Despite these difficulties, Marco-Voice demonstrates strong speaker similarity and
perceptual quality across both English and Mandarin, validating the robustness and generalization of
our approach in multilingual and emotionally-rich scenarios. Overall, these objective analysis studies
complement our human evaluation findings, further confirming the effectiveness of Marco-Voice in
both standard and emotionally challenging TTS scenarios.

Model Performance Progression Figure 2 shows that Marco-Voice-v4 achieves the best performance
with 0.78 accuracy on Chinese and 0.77 on English datasets. CosyVoicel provides a strong baseline
(0.72 Chinese, 0.67 English), while CosyVoice2 shows performance degradation. The Marco-Voice
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Figure 2 | Overall performance progression across model versions on Chinese and English datasets.
The graph shows average accuracy scores across all emotions (excluding Playfulness) for emotion
recognition tasks.
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Figure 3 | Emotion recognition performance comparison between Chinese and English datasets with
style prompts. Results show accuracy scores for six emotion categories across seven model variants
using the emotion2vec_base_finetuned classifier.

series demonstrates clear progression from v1 to v4, with v5 showing slight decline, indicating that
v4 represents the optimal balance of architectural improvements.

Crosslingual Emotion Recognition Figure 3 reveals that neutral and angry emotions achieve
consistently high performance (>0.85) across both languages, while surprise and sad emotions
remain challenging. Marco-Voice-v4 and v5 show superior performance for complex emotions, with
accuracy scores above 0.73 for surprise recognition. The relatively balanced performance between
Chinese and English suggests effective crosslingual generalization.

Language-Specific Patterns Figure 4 shows that Chinese datasets favor happy and angry emotion
recognition, while English datasets perform better for neutral and sad emotions. The convergence
of performance in advanced model versions (Marco-Voice-v4 and v5) suggests that architectural
improvements can reduce language-specific biases and support more universal emotion recognition

10
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Figure 4 | Cross-language performance comparison showing average emotion recognition accuracy
between Chinese and English datasets across all model versions.
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Figure 5 | Effect of audio duration on emotion recognition accuracy. Performance is evaluated across
three duration categories: short (<1s), medium (1s-3s), and long (>3s) audio segments for four
primary emotions.

systems.

Duration Impact on Recognition Figure 5 demonstrates that recognition accuracy increases sub-
stantially with audio duration. Short segments (<1s) show poor performance (<0.6), while medium
duration (1s-3s) provides optimal efficiency with 0.6-0.8 accuracy. Long segments (>3s) achieve the
highest performance but with diminishing returns, indicating 1s-3s as the practical sweet spot for
real-time applications.

Gender Performance Disparity Figure 6 reveals significant gender bias, with male speakers showing
substantially lower recognition accuracy across all emotions. Female speakers achieve 0.4+ accuracy
for most emotions, while male speakers often fall below 0.2, particularly for surprise and sad emotions.
This systematic bias indicates training data imbalances and highlights the need for gender-aware
model development.

11
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Figure 6 | Gender-based performance analysis showing emotion recognition accuracy differences
between male and female speakers on the Chinese dataset.

5. Discussion

5.1. Benefits of Unified Modeling

Our results demonstrate the advantages of addressing voice cloning and emotional expression within
a unified model rather than as separate components. The integrated approach allows the model to
learn the subtle interactions between speaker characteristics and emotional expressions, resulting in
more natural and consistent speech synthesis.

5.2. Limitations and Future Work

Despite the promising results, several limitations remain. First, the current model requires paired
emotional speech data, which is scarce for many languages and domains. Future work could explore
semi-supervised or self-supervised approaches to reduce this dependency. Second, computational
efficiency remains a challenge, particularly for real-time applications. Exploring model compression
techniques and optimized inference strategies would make the system more practical for deployment
on resource-constrained devices.

6. Conclusion

In this paper, we presented Marco-Voice, a multifunctional speech synthesis system that achieves
strong performance in voice cloning and emotion controllable speech generation. Through techniques
including Rotational Emotion Embedding Integration and Speaker-Emotion Disentanglement as well as
other training strategies, our system demonstrates substantial improvements over existing approaches
with particular strengths in speaker similarity and emotional expressiveness. The system’s unified
approach to modeling various speech factors enables more natural and controllable speech synthesis
than previous methods that treat these factors in isolation. This work represents an important step
toward more expressive and personalized speech synthesis, with potential applications in virtual
assistants, accessibility technologies, content creation, and human-computer interaction. Future
research directions include expanding language support, reducing data requirements, and optimizing
for real-time applications.

12
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