arXiv:2505.04021v2 [cs.DC] 12 May 2025

Prism: Unleashing GPU Sharing for Cost-Efficient Multi-LL.M Serving

Shan Yu!, Jiarong Xing?>"

Yifan Qiao?, Mingyuan Ma*, Yangmin Li°>, Yang Wang®, Shuo Yang?,

Zhigiang Xie’, Shiyi Cao?, Ke Bao®, Ion Stoica®?, Harry Xu!, Ying Sheng!”

'UCLA 2UC Berkeley
>Carnegie Mellon University

Abstract

Serving large language models (LLMs) is expensive, espe-
cially for providers hosting many models, making cost re-
duction essential. The unique workload patterns of serving
multiple LLMs (i.e., multi-LLM serving) create new oppor-
tunities and challenges for this task. The long-tail popularity
of models and their long idle periods present opportunities to
improve utilization through GPU sharing. However, existing
GPU sharing systems lack the ability to adjust their resource
allocation and sharing policies at runtime, making them in-
effective at meeting latency service-level objectives (SLOs)
under rapidly fluctuating workloads.

This paper presents Prism, a multi-LLM serving system
that unleashes the full potential of GPU sharing to achieve
both cost efficiency and SLO attainment. At its core, Prism
tackles a key limitation of existing systems—the lack of cross-
model memory coordination, which is essential for flexibly
sharing GPU memory across models under dynamic work-
loads. Prism achieves this with two key designs. First, it sup-
ports on-demand memory allocation by dynamically mapping
physical to virtual memory pages, allowing flexible mem-
ory redistribution among models that space- and time-share
a GPU. Second, it improves memory efficiency through a
two-level scheduling policy that dynamically adjusts sharing
strategies based on models’ runtime demands. Evaluations
on real-world traces show that Prism achieves more than 2 x
cost savings and 3.3x SLO attainment compared to state-of-
the-art systems.

1 Introduction

Serving large language models (LLMs) incurs substantial
costs [9], especially for inference providers (e.g., Google [15],
AWS [8], Hyperbolic [26], Novita Al [4], Together Al [6])
that host thousands of base models and user-submitted fine-
tuned models [5]. These models vary in sizes (~1B—100B+
parameters) and workloads, requiring a large GPU fleet to
meet their performance requirements. As a result, reducing
inference costs while maintaining performance (e.g., latency
objectives) has become a major focus for providers to make
their solutions more competitive and profitable.

Our in-depth analysis of four production traces (§3.1) re-
veals that serving multiple LLMs (i.e., multi-LLM serving)
introduces unique workload patterns that create both opportu-

*Corresponding authors.

3Rice University
“Intel

“4Harvard University

7Stanford University $LMSYS
le6
0 245000 -
%75
[}
3
5.0
o
E 2.5
0
2o -
Models
(a) Long-tail model popularity over a 4-month period.

(V)

‘é 750 4 Model 1 —— Model 2

= —— Model 3

Z 5001

%)

k7]

@ 250 1

3

o

& 0

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00
(b) Request rates over a 4-hour period in a day.

Figure 1: The workload characteristics of multi-LLM serving from
a representative service provider, Hyperbolic [26].

nities and challenges for cost-efficient serving. In particular,
we identify four key characteristics that must be considered.

C1: Long-tail model popularity. The popularity of models
follows a long-tail distribution. Figure 1a shows the number
of requests received by models served by a popular provider,
Hyperbolic [26]. As shown, a small number of highly popular
models account for the majority of requests, while a large
number of models in the tail receive <100 requests per hour.
C2: Frequent idle periods. Models often have interleaving
idle periods with no incoming requests. In this trace, over
60% of models experience more than 1,000 idle periods, each
longer than 10 seconds. C3: Rapid workload fluctuations.
Workload patterns change rapidly over time. Figure 1b shows
the request rates of three models in the trace, illustrating that
the workload can fluctuate by more than 5 X in just one minute.
C4: Diverse service-level objectives (SLOs). Providers typi-
cally assign different latency SLOs (~1-10+ seconds) to mod-
els based on customer requirements and workloads [40,43,55].
Maintaining these SLOs is essential, as violations can result
in customer compensation and reputational damage [12].

Because of C1 and C2, the most common practice today—
dedicating a single or a group of GPUs to each model—often
leads to significant resource underutilization, as individual
models in the popularity tail or during idle periods leave GPU
resources unused. A simple back-of-the-envelope calculation
on the above trace shows that this serving strategy would
require around 120 H100-80G GPUs in total, but most would
remain idle, with an average compute utilization of just 1.3%
and memory utilization of 28.4%.

Several solutions have been proposed to improve utilization
by sharing GPUs across multiple LLMs, as summarized in Ta-

Dedicated S-Pa. Muxs. QLM Ours

Space sharing by model colocation X X
Time sharing by model swapping X X X
Runtime sharing policy adaptation X X X X
Cost saving & meeting SLOs X X X X
GPUs needed for 8 models 8 7 5 8
SLO attainment with 2 GPUs - 9% 51% 45%

Table 1: Comparison of GPU sharing systems. S-Pa.: static GPU
partition; Muxs.: MuxServe. The last two rows show the number of
GPUs needed for 8 models to achieve 99% SLO attainment and the
SLO attainment when limited to 2 GPUs.

ble 1. First, MIG [38] and fractional GPUs [1,7,46] statically
partition GPU resources into slices, allowing multiple models
to run together using space sharing. MuxServe extends this by
allowing models colocated on the same GPU group to share
resources without fixed per-model limits. QLM [40] attempts
to share GPUs in time by swapping models in and out.

However, these approaches statically allocate resources
or use a fixed sharing policy, making them ineffective at
handling dynamic workloads (C3). As a result, they fall
short of achieving cost efficiency while meeting latency SLOs
(C4). Specifically, static partition (e.g., MIG [38] or fractional
GPU [1,7,46]) prevents slices from sharing unused capacity,
forcing systems to provision for peak workloads, leading to
low utilization during off-peak periods. MuxServe [16] de-
rives model colocation strategies (which models to share a
GPU) based on offline profiling, lacking the ability to adjust
colocation strategies dynamically based on workload changes.
For example, even if a model becomes idle, it continues occu-
pying GPU memory. QLM [40] enforces time sharing across
all LLMs through model swapping. However, its swapping
incurs significant latency overhead, making frequent swaps
of latency-sensitive models prone to SLO violations.
Insight. To unleash the full potential of GPU sharing for
multi-LLM serving, we must flexibly combine space and
time sharing and dynamically adjust resource allocation in
response to runtime workload variations. For example, mul-
tiple low-demand models can share a GPU during steady
periods (space sharing), but when one becomes idle, its mem-
ory can be reallocated to a surging high-demand model (time
sharing). The fundamental challenge is enabling flexible and
demand-aware cross-model memory coordination,! which
is missing in existing systems. Flexibility ensures models
can promptly acquire the resources needed to meet their la-
tency SLOs, while demand-awareness ensures that available
memory is shared wisely across models to maximize over-
all SLO attainment. Together, these two properties enable
cost efficiency while maintaining performance objectives in
multi-LLM serving.

In this work, we design Prism, a system that fully unleashes
the power of GPU sharing for cost-efficient multi-LLM serv-
ing. Prism tackles two key challenges in its design, achieving

I'This work focuses on memory sharing, as GPU compute can already be
flexibly shared in time and space using MPS [35].

flexibility and demand-awareness in cross-model memory
coordination.

Challenge 1: How to enable flexible cross-model mem-
ory coordination? Today’s LLM serving engines (e.g.,
SGLang [64] and vVLLM [29]) are designed primarily for
single-model serving. They rely on per-model static mem-
ory allocation, where both virtual and physical GPU memory
are pre-allocated and remain fixed throughout the serving
lifecycle. While PagedAttention [29] is commonly adopted,
it operates at the application level, managing only the KV
cache within each model’s pre-allocated memory, without
support for memory coordination across models. This design
introduces three key limitations: (1) colocated models cannot
utilize each other’s unused memory; (2) memory released by
evicted models cannot be quickly reclaimed by others; (3)
evicted models cannot be promptly reactivated upon receiving
new requests due to slow memory reallocation.

Flexible memory coordination requires dynamic memory

redistribution across multiple models, which in turn demands
memory management at the system level. Prism enables this
through its kvcached component, positioned beneath Page-
dAttention. Atits core is an on-demand allocation mechanism
that decouples virtual and physical GPU memory. Instead
of allocating physical memory during initialization, serving
engines reserve only virtual address space, with physical mem-
ory allocated and mapped dynamically at runtime. This design
allows flexible redistribution of memory between models for
both KV caches and model weights. Building on this founda-
tion, Prism also enables fast model activation by employing
pre-launched engines with reusable virtual address space and
loading model weights in parallel.
Challenge 2: How to coordinate memory allocation to
maximize SLO attainment? Models served by shared GPUs
inevitably contend for memory. They differ in request rates,
reflecting varying KV cache demands, and in SLO require-
ments, which indicate how urgently each model must acquire
the resources it needs. Without proper coordination, mem-
ory contention can severely impact performance and lead to
SLO violations, as inference is highly sensitive to available
memory. For example, enlarging the KV cache from 5 GB
to 15 GB can boost the throughput of a Llama3-8B model by
more than 2x on an H100 GPU.

Prism solves this problem through two-level scheduling. 1t
first employs a global scheduler to place models across GPUs
using a heuristic called KV pressure ratio, which captures
the balance between models’ KV cache demands (based on
request rates and SLOs) and GPUs’ available memory. The
scheduler aims to maximize the minimum KV pressure ratio
across GPUs, resulting in the most balanced placement. For
colocated models on a GPU, Prism uses a local scheduler to
coordinate memory allocation. It introduces a GPU-level re-
quest queue and priority-based admission control to dispatch
requests to serving engines. Priorities are derived from each
request’s SLO, preventing arbitrary memory contention.

Results. We implemented Prism on top of SGLang [64],
a widely used LLM serving engine. We evaluated Prism
comprehensively with two production traces, and with 58
representative LLMs of varying sizes, on GPU clusters with
up to 32 H100 GPUs. Our results show that Prism achieves up
to 3.3 higher TTFT SLO attainment and 2x higher TPOT
SLO attainment given the same amount of GPUs. When
targeting the same level of SLO attainment, Prism achieves
up to over 2 x cost reduction or 3.5 X more requests compared
to the state-of-the-art. We will release the prototype of Prism
to the community.

2 Background

LLM inference. LLM inference consists of two stages: pre-
fill and decode. The prefill stage processes the request input
(i.e., prompt) and generates the first output token. This is fol-
lowed by the decode stage, where the LLM generates output
tokens auto-regressively—producing one token per iteration
using all previously generated tokens as input. Thus, the out-
put length is usually unknown. To improve throughput, LLM
serving systems commonly batch multiple requests to process
together [58]. To balance the throughput-latency trade-off
of batching, chunked-prefill [2] divides prompts into smaller
chunks and feeds them to the inference batch incrementally,
reducing latency by overlapping prefill with ongoing decode.

KYV cache. LLM inference generates a large amount of in-
termediate data, known as the KV cache. KV cache must
remain in GPU memory for the entire inference duration of a
request. Its size grows linearly with the request’s input and
output lengths, and can easily reach tens of gigabytes for long
sequences. Thus, inference batch size is directly constrained
by the available GPU memory for KV cache.

PagedAttention. To use GPU memory more efficiently, Page-
dAttention [29] is introduced to manage KV cache. PagedAt-
tention is inspired by the classical virtual memory and paging
techniques in operating systems—it breaks the GPU memory
into small, fixed-size pages and manages them with a page
table. This design allows requests to allocate GPU memory at
page granularity, significantly improving memory utilization
compared to prior systems [58], which reserve a contiguous
memory block for each request’s maximum decoding length.
PagedAttention has been widely adopted by mainstream serv-
ing engines, such as SGLang [64] and VLLM [29].

Inference latency metrics. There are various latency metrics
in LLM serving [54]. In this work, we use two common
metrics: time-to-first-token (TTFT), which measures the time
to generate the first output token, and time-per-output-token
(TPOT), which captures the average time of generating a
token. TTFT reflects the user-perceived latency in receiving
initial responses, while TPOT captures the user experience
during token-by-token output generation.

Trace name Service provider # models Time span
Hyperbolic Hyperbolic [26] 24 4 months
Novita Novita Al [4] 16 1 month
Arena-Battle Chatbot Arena [14] 129 16 months
Arena-Chat Chatbot Arena [14] 84 11 days

Table 2: Production trace summary.

3 Motivation
3.1 Workload Implications for GPU Sharing

To understand the workload of multi-LLM serving, we an-
alyze four production traces in detail. These traces are col-
lected from representative service providers as summarized
in Table 2. The first two traces are from Hyperbolic [26] and
Novita Al [4], two popular LLM inference service providers.
They offer inference APIs for a variety of foundation mod-
els and also support user-deployed, fine-tuned models. The
last two traces are from Chatbot Arena [14], a widely used
open-source platform for LLM evaluation. It compares model
responses via human preference voting (Arena-Battle) and
also provides interfaces for real-time conversations with vari-
ous models (Arena-Chat). Our analysis reveals four unique
workload characteristics, creating both opportunities and chal-
lenges for GPU sharing in multi-LLM serving.

(1) Long-tail model popularity. Figure 2a presents the dis-
tribution of requests received by each model. We find that
all traces exhibit long-tail model popularity—approximately
60% of the models contribute to just 25% of all requests.
This trend is due to the wide variety of LLMs available to-
day. Most users choose recently released foundation models,
while other models are used only in domain-specific or less
common scenarios. As a result, models in the popularity tail
are often unable to fully utilize their dedicated GPUs due to
their low request rates. For example, the Llama-3.2-3B model
in the Hyperbolic [26] trace utilizes only 2.3% of compute
and 10.2% of memory on average on an H100 GPU.

Implication #1: Multiple low-demand models can space
share GPUs to improve resource utilization.

(2) Frequent idle periods. Models often experience idle
periods during which no requests arrive. Figure 2b shows the
median idle duration across all models in each trace. In all
traces, many models exhibit a median idle duration exceeding
30 seconds. The Chatbot Arena traces show even longer idle
durations, with over 50% of models having a median idle
time greater than 80 seconds. Figure 2c further reports the
average number of idle intervals (>10 seconds) that occur per
hour. As shown, idle periods occur frequently—around 50%
of models experience more than 40 such intervals per hour in
the Hyperbolic and Novita traces. Some models even exhibit
over 100 intervals, implying they are idle for at least 27% of
the time (assuming each interval lasts 10 seconds).

1.00 - A Arena-Battle
43 - 103 § — Arena-Chat
4 © = Hyperbolic
qéo 75 S —— Novita
£ 0.50 £ 107
‘S Arena-Battle =
w 0.25 » = Arena-Chat ©
8 /’ —— Hyperbolic 5 10! 4
1L —— Novita 9
0.00 1 - . =

Model percentage Model percentage

(a) Long-tail model popularity. (b) Median request interval.

#interval(>10s)/hour

125 y 3
— ﬁigﬂg.gﬂgtle Arena-Battle
1001 — Hyperbolic —— Arena-Chat
—— Novita 247 Hyperbolic
751 —— Novita
>
50 1 (@]
1 4
25 A
0 1 T - H 04y . '
0.0 0.5 1.0 0.0 0.5 1.0

Model percentage Models percentage

(c) Number of intervals per hour. (d) CV of request rate per minute.

Figure 2: A detailed analysis of four production multi-LLM serving traces. These figures show that long-tail model popularity exists in all
traces (a), many models have frequent idle period (b)+(c), and the request rate can fluctuate rapidly (d).

Implication #2: The frequent long idle periods allow time

sharing by evicting idle models from GPUs and reloading
upon new request arrivals.
(3) Rapid workload fluctuations. Figure 1b illustrates
the workload fluctuations of three models from the Hyper-
bolic trace. Here, we present a more detailed quantitative
analysis of all traces. Figure 2d shows the distribution of the
coefficient of variation (CV) of requests per minute for each
model. The CV, calculated as the standard deviation divided
by the mean (6/u), quantifies the relative variability in re-
quest rates—higher values indicate more bursty workloads.
Both the Hyperbolic and Novita traces contain many models
with a CV greater than 1.0, indicating significant workload
fluctuations. The Chatbot Arena traces have lower request
rates, resulting in smaller CVs overall, but many models still
exhibit CVs greater than 0.5.

Implication #3: No fixed sharing policies work well across
all scenarios caused by workload changes. The policy, e.g.,
which models to colocate and how to allocate resources for
them, must be adjusted based on real-time workload.

(4) Diverse latency SLOs. Models have varying latency
SLOs (~1-10+ seconds), determined by their specific use
cases and user requirements [40,43]. For example, coding
assistants [53] require low response latency to keep up with
a programmer’s coding flow, while document summariza-
tion [10] can accommodate relatively higher delays. The
Novita trace exhibits end-to-end latency SLOs from Ss to 25s.

Implication #4: Latency SLOs reflect how quickly models
need to access their required resources. GPU sharing should
explicitly consider the SLO diversity to prioritize resource
allocation and maximize overall SLO attainment.
Summary. The low resource demands of tail models and
the frequent long idle time provide opportunities for GPU
space and time sharing to improve utilization. The challenge
lies in handling rapid workload fluctuations, which requires
dynamically adjusting sharing policies and resource allocation
based on real-time workloads and SLO requirements.

3.2 Limitations of Existing Approaches

Existing systems allocate memory statically or use fixed shar-
ing policies, lacking the flexibility to adapt to workload fluc-

1.04
B T1 T2 —— Model 2
EQ Model 1
g & 05
(9]
e« 0.0 AN wr'\r'\w‘_f"’ 1
[} © = MuxServe
'SE 0.5 - S-Partition
©
o2 T
>
“ et LA \
00 - T T T T
0 180 360 540 720
Time (s)

Figure 3: The size of KV cache memory different GPU sharing

systems can use on an example workload.
led

| Llama3-3B —A— Mistral-nemo-12B
i —— Llama3-8B

T T T y u u u + u
5 10 15 20 25 30 35 40 45
KV cache pool size

o

on H10
o o »
o 49 o
o w o

o
N
v

Tokens/sec

Figure 4: Memory sizes directly impact inference performance.

tuations at runtime. Thus, they fail to maximize the efficiency
of memory usage to meet latency objectives. To illustrate, we
evaluated their performance using a workload (Figure 3) that
mirrors the request rate patterns of Modell and Model2 in
Figure 1b during 10:00-10:30 (T1) and 13:30-14:00 (T2). In
T1, both models have fluctuating loads, with Modell handling
a higher volume of requests. In T2, Model2 experiences a
spike in demand, while Modell becomes idle.

Figure 3 (bottom) shows the total KV cache size over time.
Although both MuxServe [16] and static partition allow GPU
space sharing, MuxServe achieves higher KV cache usage
during T1 by flexibly sharing memory between models. In
contrast, static partition prevents Modell from leveraging
Model2’s unused memory. QLM [40], which time shares
the GPU through model swapping, shows periodic drops to
zero, reflecting the substantial overhead caused by its swap-
ping. During T2, as Modell becomes idle, QLM dedicates
the full GPU to Model2, producing the highest KV cache us-
age. Meanwhile, MuxServe exhibits lower usage than QLM
since it lacks the ability to evict idle models, leaving Model1’s
weights in GPU memory unnecessarily. KV cache size di-
rectly determines the batch size and impacts inference perfor-
mance. As Figure 4 shows, enlarging the KV cache pool from
5 GB to 15 GB yields over a 2x throughput improvement.

LM | §6.2 Global scheduler |

applications
<> — 4\ §5.2 | CPUDRAM
6.3 Local Fast model
eess| [HOBON Soeaver ||| scivaton
) H

Frontend

(vosen] wose2)

§5.1 Flexibly shared memory

Model 2

Figure 5: The system architecture and design overview of Prism.

GPU

This example highlights the importance of cross-model
memory coordination in unlocking the full potential of GPU
sharing for cost-efficient multi-LLM serving. Memory must
be allocated flexibly to adapt to workload shifts and used
wisely to meet performance goals. In this example, during T1,
the two models should be colocated and share GPU memory
flexibly; during T2, the GPU should be dedicated to Model3
by evicting the idle Modell.

4 Overview

Prism is a multi-LLM serving system that unleashes the full
potential of GPU sharing to improve cost efficiency while
meeting latency SLOs. Figure 5 shows its system architecture
and design overview. Prism receives inference requests at its
frontend, which routes them to the corresponding LLMs for
processing. To improve cost efficiency, Prism serves LLMs
via GPU sharing with flexible combinations of space and time
sharing. For instance, high-rate models may occupy GPUs
exclusively, while multiple low-rate models can be colocated
on a single GPU or GPU group. Idle models are temporarily
evicted to CPU DRAM and reactivated when new requests
arrive. Prism continuously adjusts its sharing strategies based
on runtime workload to maximize overall SLO attainment.

Prism achieves this with two key designs that enable flex-
ible and demand-aware cross-model memory coordination.
First, introduces an on-demand memory allocation mecha-
nism (§5.1), enabling models to acquire memory based on ac-
tual demand. This flexible mechanism allows Prism to adapt
rapidly to workload variations and policy changes, while also
facilitating fast model activation (§5.2). Second, Prism opti-
mizes the overall resource allocation through demand-aware
cross-model memory coordination. It employs a two-level
scheduling strategy to coordinate model placement and mem-
ory allocation. At the global level, Prism places models across
GPUs based on their memory demands (§6.2). At the GPU
level, it uses a shared request queue combined with priority-
based admission control to manage memory sharing among
colocated models (§6.3).

S Enabling Flexible GPU Sharing

In this section, we describe how Prism enables flexible mem-
ory coordination across models (§5.1) and leverages it for fast

(Cween) [wewz)

Model IPagedAttentlon Model
P hed P hed

I PagedAttention
weights 00OM { weights

Virtual
memory

avoidance

Physical
memory

100

Figure 6: Flexible memory sharing in Prism.

model activation (§5.2), forming the foundation for adapting
sharing policies to runtime workload changes.

5.1 Cross-Model Memory Coordination

Memory management in today’s inference engines is pri-
marily designed for single-model serving. It pre-allocates a
large chunk of GPU memory during initialization, including
both virtual and physical memory in a fixed 1:1 mapping.
This memory is statically reserved for the model and remains
unchanged throughout its lifecycle. Although PagedAtten-
tion [29] is widely used to dynamically allocate KV cache
memory based on request demand, it manages memory at the
application level, still operating within the statically reserved
memory region of a single model. This per-model static allo-
cation prevents flexible memory redistribution across models,
limiting the ability to adapt GPU sharing policies at runtime.
As shown in §3.2, this inflexibility will lead to limited infer-
ence performance.

To solve this problem, we need engines to dynamically
acquire memory on demand rather than reserve statically.
However, implementing this in current engines would require
intrusive changes, as their system stacks are designed with
static memory allocation in mind. For example, most CUDA
kernels are developed with the assumption of contiguous vir-
tual addresses, whereas dynamic memory allocation can lead
to non-contiguous address space, necessitating modifications
to both kernel implementations and their calling stacks.
kvcached: A shim layer for on-demand cross-model mem-
ory allocation. Prism achieves on-demand memory alloca-
tion while maintaining compatibility with current engines by
designing kvcached as a shim layer. It decouples virtual and
physical memory allocation using recently introduced CUDA
virtual memory management APIs [36]. As shown in Figure 6,
in Prism, engines only need to reserve virtual memory during
initialization, which is a large chunk of contiguous address
space consisting of fixed-size memory pages (e.g., 2 MB).
This creates an illusion to engines that all memory is readily
available, while in reality, physical memory is allocated and
mapped to a virtual page only on demand.

kvcached is implemented as a runtime library that can be
integrated with current inference engines by changing only
~20 lines of code. Table 3 summarizes the provided APIs. En-
gines can use alloc_kvcache or free_kvcache APISs to cre-
ate or destroy a KV cache memory pool. Internally, kvcached
allocates or frees the corresponding virtual space. Engine’s

APIs for inference engines \ Corresponding kvcached functions

alloc_kvcache (size, shape) \ alloc_virtual_tensor (size, shape)

free_kvcache (size, shape) \ free_virtual_tensor (size, shape)

alloc_kv (num_tokens) \ map (tensor, offset)

free_kv ([ids_to_free]) \ unmap (tensor, offset)

Table 3: APIs and functions provided by Prism’s kvcached.

KV manager can dynamically allocate or free the KV cache
of a request via alloc_kv and free_kv. kvcached main-
tains the usage status of KV cache pages. When alloc_kv is
called, it checks whether the corresponding virtual page has
been mapped; if not, it allocates a physical page and maps it
accordingly. Similarly, if a page becomes empty on free_kv,
its physical memory will be unmapped and released.

Prism enables model-independent memory allocation by
allowing each engine to link to its own instance of kvcached.
This is important because CUDA manages GPU memory in
fixed-size pages (i.e., 2 MB), while models may use differ-
ent token sizes (e.g., 16 KB vs. 48 KB). Storing tokens of
varying sizes on the same page breaks PagedAttention, as it re-
lies on index-based lookups for efficient token access, which
requires uniform token sizes. Moreover, Prism introduces
shared system variables across kvcached instances to track
global memory usage. Combined with proper locking mecha-
nisms, it coordinates memory allocation across engines and
help prevent out-of-memory errors caused by race conditions.
Optimizations. Allocating and mapping memory pages on
the fly incurs extra latency. Prism reduces this overhead
by two optimizations. First, it prioritizes using partially
filled pages and placing new tokens in the most utilized page
that fits the memory demand. This improves page utiliza-
tion and reduces the frequency of new allocations. Second,
Prism maintains a buffer of pre-allocated and mapped mem-
ory pages. When a engine requires new pages, it retrieves
them directly from this buffer. The buffer is managed asyn-
chronously, with its overhead fully overlapped with inference
computation. These optimizations ensure that kvcached has
negligible overhead on inference computation.

5.2 Fast Model Activation

Model swapping speed directly impacts the flexibility of GPU
sharing. High latency can hinder the timely swapping of
models with strict SLOs, limiting policy adaptability. While
deactivation is straightforward, i.e., terminating the engine
and releasing all memory, reactivation is more complicated,
which involves: (1) initializing a new serving engine and
reserving a new virtual address space for KV cache pool; and
(2) loading the model weights from CPU DRAM. If done
naively, this process can take tens of seconds—far exceeding
the TTFT SLOs of online LLM inference, which are often
within just a few seconds or less.

Reusable engine pools. The root cause of (1) lies in the
tight coupling between the engine and the model it serves. In

current systems, an engine shares the same lifecycle as its
model—when a model is evicted, its engine is also terminated,
along with its virtual address space. As a result, every model
activation incurs the full cost of engine initialization.

Prism eliminates this overhead by decoupling the lifecycles
of the engines and models. Specifically, it maintains an engine
pool on each GPU, where engines are pre-initialized with
virtual address space and distributed contexts. Upon model
activation, Prism selects an available engine from the pool
and starts model loading directly. When a model is evicted,
its physical memory is released, but its engine with virtual
address space is returned to the engine pool for future reuse.

However, an engine cannot directly reuse previously re-
served virtual memory space to serve a new model. This is
because current inference engines perform index-based token
access, which depends on a model-specific memory layout
that is incompatible with models of different architectures,
e.g., different numbers of layers or token sizes. To address
this, Prism introduces a KV cache virtual memory manager
to manage the pre-reserved virtual memory spaces in engine
pool. When a new model is loaded, the manager dynamically
aligns the reserved virtual space to match memory layout
required by the new model (one-time effort), and then create
a new kvcached based on the aligned memory spaces. The
kvcached can then correctly and efficiently locate the virtual
memory page where each token resides during inference.
Parallel model weight loading. The time spent on (2)
model weight loading is heavily influenced by the utiliza-
tion of the CPU-GPU interconnect bandwidth. We found
that loading models naively via the cudaMemcpyAsync API
to a GPU fails to saturate the interconnect bandwidth, even
when invoked from multiple threads. This may be due to
all cudaMemcpyAsync operations targeting the same GPU
executing serially, limited by the CUDA driver and hardware.

Prism overcomes this bottleneck by chunking model
weights into smaller segments, loading them in parallel across
multiple GPUs on the same node, and then aggregating them
to the target GPU via high-speed NVLink interconnects. This
parallelized strategy significantly accelerates model loading.
To minimize interference with running workloads on GPUs,
Prism partitions model weights at the granularity of individual
weight tensors and loads them in a streaming fashion. As a
result, each GPU only needs to maintain a small buffer (e.g.,
30MB), minimizing possible memory contention.

With these optimizations, as we show in our evaluation
(Figure 9), Prism can activate an 8B model in 0.7s and a 70B
model in 1.5s—4.8x to 7.1 x faster than the naive approach.

6 Two-Level Demand-Aware Scheduling

The techniques proposed in §5 lay the foundation for flexible
GPU sharing in multi-LLM serving. However, to fully un-
leash its benefits, we need to derive effective sharing policies

from real-time workload to maximize the sharing benefits. In
this section, we first describe the scheduling problem and then
present our two-level demand-aware scheduling algorithm.

6.1 The Scheduling Problem

Models sharing GPUs inevitably contend for memory when
resources are constrained, so GPU memory must be used
efficiently to ensure performance. This raises a key question:
given a fixed number of GPUs, a set of models, and their real-
time workloads, how should we coordinate memory allocation
across models to satisfy their demands as much as possible?

We prioritize optimizing time-to-first-token (TTFT), as it
depends on the prompt length, which is known at the time
of request submission. In contrast, time-per-output-token
(TPOT) is influenced by the output length, which is unknown
in advance due to the auto-regressive nature of LLM decod-
ing. Nonetheless, our system can also benefit TPOT because
it satisfies each model’s resource demand as much as possi-
ble. This reduces the likelihood of request preemption due to
insufficient memory, which would otherwise degrade TPOT.

Prism coordinates memory allocation across models using
two-level scheduling: (1) global scheduling (§6.2) determines
the placement of models across GPUs based on their resource
demands, aiming to balance the load and avoid resource bottle-
necks; and (2) GPU-local scheduling (§6.3) manages requests
from models colocated on the same GPU based on priority,
achieving efficient KV cache memory sharing.

6.2 Global Model Placement Scheduling

Prism’s global scheduler intelligently places models on avail-
able GPUs according to their resource demands, with the
goal of balancing the load to minimize resource contention.
It performs three key operations: (1) determining model-to-
GPU placement, (2) evicting idle models, and (3) activating
inactive models upon request arrival.
Model-to-GPU placement. To maximize memory usage
efficiency, the scheduler must consider both the request load
and SLOs across models. The request load determines the
total memory a model requires for serving, while the SLO
reflects how urgently a model must acquire these resources
to meet its latency goals. This task faces two difficulties in
practice. First, the search space is huge (i.e., N, assuming
N GPUs and M models). Second, accurately estimating the
memory demand of a model is difficult, as it depends on
output lengths that are not known in advance.

Prism solves this problem using a heuristic we call KV
pressure ratio (KVPR), which quantifies the degree of KV

: w_req_rate
cache pressure on a GPU. It is calculated as -5~ =—= 7 %> Where

w_req_rate = "5 represents the SLO-weighted request

rate of a model, indicating its memory demand per unit time,
and shared_kv is the memory available for KV cache on a
GPU. A higher KVPR indicates higher memory pressure and
a more congested GPU.

Algorithm 1 Global Model Placement Scheduling

Require: Number of GPUs N, GPU memory capacity C, migration
threshold 7, and M models. Each model m; has: request rate r;,
weight w;, current device index g;, and latency SLO ;.

Ensure: Assign each model to a GPU to balance the resource de-
mand and remaining memory capacity.

1: Sort models by % in descending order. Denote the sorted se-
quence as mjp,my,...,Mmy.
2: fori=1toN do

3 shared_kv; < C; w_req_rate; < 0

4: for k=1toM do

5: /* find the GPU best_idx that minimizes KVPR */

6.

7

best_r, best_idx < (min, argmin)%
_kvi

w_req_rateg,

current_r < —go—orpk Ty,

best_idx, if current_r—best_r > 1T
8: gpu_best <

9: Assign model my, to best_gpu

10: /* update states */

11: W_req_ratepes_gpy < W_req_ratepeg _gpy + %
12: shared_kvpes_gpy < shared_kvpeg_gpu — Wi

8k otherwise

13: return Model-to-GPU placement

Using this heuristic, Prism determines the best model-to-
GPU placement through a customized multi-machine schedul-
ing algorithm, as shown in Algorithm 1. It first sorts models
by their weighted request rates in descending order and initial-
izes the GPU states (Lines 1-3). Next, for each model, Prism
selects the GPU that minimizes KVPR (Lines 5-8). If the
selected GPU differs from the model’s current GPU, Prism
migrates the model to the new GPU. However, this migration
incurs overhead from engine switching and model weight
loading. To avoid unnecessary migrations with marginal ben-
efit, Prism compares the KVPR of the best and current GPUs,
and proceeds only if the improvement exceeds a threshold ©
(Line 8). Finally, Prism assigns the model to its selected GPU
and updates the corresponding GPU states (Lines 9-12).

Analysis. The global model placement algorithm ensures
that the maximum KVPR across all GPUs is bounded by the
maximum KVPR in the optimal placement. This algorithm
also supports models utilizing tensor parallelism (TP) by treat-
ing each TP partition as a separate model and enforcing their
placement on distinct GPUs. A more detailed analysis is
provided in Appendix A.1.

Model eviction and activation. The global scheduler evicts
a model if it remains idle longer than an empirical threshold,
which can be determined by analyzing the idle interval dis-
tribution. Prism evicts models only when GPU resources are
constrained and prioritizes evicting models with larger SLOs.
When the evicted model receives new requests, Prism imme-
diately reactivates it by selecting the GPU with the lowest KV
pressure ratio to serve it.

6.3 GPU-Local Request Scheduling

Models assigned to the same GPU may compete for KV cache
memory when the total memory is limited. Without proper
coordination, this contention can lead to inefficient memory
usage and degraded SLO attainment. For example, a model
with a high request rate but a relaxed SLO may consume
a large portion of memory, preventing models with stricter
SLOs from obtaining enough memory to use.

A naive solution is to limit the memory that each model can
use. However, determining appropriate limits is challenging
due to the dynamic request patterns and different SLOs. Con-
servative limits may unnecessarily throttle a model’s through-
put, while overly generous ones can reduce the available mem-
ory for other models, as total allocation must remain within
the GPU’s capacity. An improvement is to adjust these limits
dynamically based on runtime workloads. However, such
adjustments cannot take effect immediately, as memory must
first be released by one model before it can be reallocated to
others. This requires waiting for the model to complete some
of its ongoing requests—a process that can take seconds to
minutes, depending on request length and load.

This memory coordination challenge stems from each en-
gine maintaining its own request queue and greedily schedul-
ing requests as memory becomes available. To address this,
Prism introduces a shared GPU-level request queue, coupled
with a priority-based admission control mechanism to coordi-
nate memory usage across models. Incoming requests from
all models sharing a GPU are first placed into the GPU-level
request queue. Prism then dequeues requests based on their
priorities and dispatches them to the corresponding engines.
Prism greedily dispatches requests up to the point where they
can execute immediately without causing queuing within the
engines’ local waiting queues. This approach balances high
memory utilization with strict admission control.

Prism determines the request dequeue order based on the
Moore-Hodgson algorithm [32], which minimizes the number
of deadline misses. As shown in Algorithm 2, given a set of
requests R, Prism first sorts them in ascending order of their
prefill completion deadlines, i.e., a; + s; for each request r;,
where q; is its arrival time and s; is the TTFT SLO. Then,
for each request in the sorted list, Prism appends it to the
schedule list S and checks whether it can finish within its
TTFT SLO. Specifically, it checks whether current_time +
e, < a,+s,, where e, denotes the prefill time of request r. e,
can be calculated as e, = 22, with p, being the prompt length
and ¢, the chunked preﬁll speed determined by the model’s
chunk size configuration. If the most recently added request
cannot meet its deadline, Prism evicts the request in S with
the longest execution time (Lines 9-11). It then moves to the
next request and continues this process until evaluating all
requests. Finally, Prism dispatches the accepted requests in §
following their order in the schedule.

Algorithm 2 GPU-Local Request Scheduling

Require: A set of n requests R = {ry,r3,...,r,}. Each request r;
has: a prompt length p;, a chunked-prefill speed ¢; determined
by the model serves it, a TTFT SLO s;, and an arrival time a;.
Ensure: A subset of requests S C R that can be executed in order to
maximize TTFT SLO attainment.
1: Sort R in ascending order of deadlines d; = a; + s;: r1,7r2,...,1
such thatd; < dp <--- <d,.

2: Initialize S < 0, current_time < Timer.time()

3: fork=1tondo

4: Letrerk,ere%

5: Append rto S '

6: Update current_time <— current_time + e,.

7: if current_time > a, + s, then

8: /* pop the request with longest execution time */
o: Let rpax < argmax ’C) z

res

10: Remove rpax from S
11: Update current_time <— current_time — %
12: return S

Analysis. When chunked-prefill has prefill running at each
inference step, the request scheduling ensures optimal TTFT
attainment. This is because, in this case, the prefill time e, of a
request 7 can be estimated as e, = p - allowing us to computes
the prefill completlon tlme of any request r; in a sequence
using d,, = a,, + Y1, 2 C , where 7 is the number of requests

(including r;) waiting for processing. With this information,
we can follow the proof of the original Moore-Hodgson algo-
rithm [13] to prove the optimality of our scheduling algorithm.
The assumption that prefill runs at each inference step holds
in most cases. However, in rare situations where the KV
cache is insufficient to admit new requests, prefill may be tem-
porarily paused and some running requests will be preempted.
Our admission control alleviates this by admitting a proper
number of requests and reserving a memory buffer per engine
to ensure enough space to complete part of the request batch.

7 Implementation and Evaluation
7.1 Implementation

We implemented a prototype of Prism with ~10,400 lines of
Python and 774 lines of C++ code. As the serving backend,
we used SGLang [64], a widely adopted open-source infer-
ence engine, and extended it with our kvcached library to
support on-demand memory allocation. kvcached is imple-
mented using CUDA VMM APIs [36] and provides standard
KV cache allocation APIs (Table 3) accessible through Python
bindings. These APIs are designed to be agnostic to attention
mechanisms and architectural differences across inference
engines, enabling seamless integration—we modified only 22
lines of code in SGLang. For compute sharing, we configured
the MPS percentage to 100% per model, allowing models to
time and space share the GPU compute resources.

Model size 1B-3B 4B-8B 9B-30B 31B-70B

#LLMs 43 8 3 4

Table 4: Models used in our evaluation.

On the frontend, we used a Redis queue [45] to cache
incoming requests from all clients. Prism’s local scheduler
dispatches these requests to the serving engines of correspond-
ing models based on Algorithm 2. For tensor-parallel models,
the GPU-local scheduler runs only on the first rank, and the
resulting scheduling decisions are broadcast to all other ranks
to ensure consistency. Prism’s global scheduler operates as a
separate Python process, collecting execution metrics from
each engine—such as request rates and queue status. It makes
scheduling decisions (e.g., model evictions and activations)
and communicates them to the engines using ZeroMQ [59].

7.2 Experimental Setup

Testbed. We conducted our experiments on a cluster of four
nodes, each equipped with eight NVIDIA H100-80G GPUs
interconnected via 600GB/s NVLink. These nodes commu-
nicate through an 100Gbps Ethernet network. Each node
features two 52-core Intel Xeon Platinum 8480+ CPUs, 1.7
TB of DRAM, and a PCle Gen5 x16 interface, which pro-
vides up to 64 GB/s of unidirectional bandwidth per GPU
connection. All nodes run Ubuntu 22.04 with CUDA Toolkit
12.4.

Baselines. We compared Prism against three baselines:
(1) Static partition (S-Partition), (2) MuxServe++, and (3)
QLM [40]. Note that the original MuxServe [16] is built
on vVLLM and supports only Llama-2 models. We ported
it to SGLang and extended it with our on-demand memory
allocation mechanism to support a wider range of models,
referred as MuxServe++. We carefully tuned MuxServe++ to
ensure it achieves performance comparable to or better than
the original version (Calibration data in Table 5).

Traces and models. We used two real-world traces, Hyper-
bolic [26] and Arena-Chat [48], that are previously analyzed
in §3.1. For each trace, we sampled a representative set of
models, including both popular and long-tail models, ensur-
ing their workload characteristics (e.g., popularity distribution
and idle patterns) align with the observations in §3.1. To simu-
late a variety of scenarios, we scaled the traces by multiplying
the number of requests by a factor of N, increasing the load
while preserving the original traffic patterns—a method com-
monly used in prior work [16,30]. In total, we evaluated 58
LLMs as detailed in Table 4. The large-scale experiments
(§7.5) use the full model set, while other evaluations (§7.3—
§7.4) select subsets tailored to specific goals.

Metrics. Our primary performance metrics are TTFT and
TPOT attainment. To establish SLOs for each model, we
first ran its workload on dedicated GPUs to measure its P95
TTFT and TPOT latencies. This process produced TTFT
SLOs ranging from 0.04s to 0.13s and TPOT SLOs from

5.2ms to 50.9ms. We then scaled these baseline values by a
factor to evaluate system performance under varying latency
requirements, following an approach consistent with prior
work [16,30,43]. We also reported aggregated throughput.
To account for model idle periods, throughput considers the
actual time (excluding idle time) spent serving them.

7.3 End-to-End Performance

We first evaluate the end-to-end performance of our system
under varying request rates, SLO requirements, and numbers
of GPUs, on both Hyperbolic and Arena-Chat traces.

SLO attainment vs. request rate. We first evaluated Prism’s
performance on various inference load by serving eight model
on two shared GPUs. As shown in Figure 7 (first row), Prism
consistently outperforms the baselines by maintaining sig-
nificantly higher TTFT SLO attainment. On the Hyperbolic
trace, Prism supports up to 2.3 x and 3.5 x more requests than
MuxServe++ and static partitioning, respectively, while still
achieving 99% SLO attainment. On the Arena-Chat trace,
it handles over 3x more requests than all baselines. This
improvement stems from Prism’s ability of flexibly adjusting
sharing policies according to the real-time workload, ensur-
ing that more models can acquire their needed resources to
achieve their SLO requirements.

MuxServe++’s TTFT SLO attainment drops quickly as the
request rate increases because it cannot evict idle models or re-
locate models across GPUs to balance resource demands. As
the load grows, MuxServe++ experiences increasing memory
contention, leading to degraded performance. QLM consis-
tently shows low TTFT SLO attainment, even lower than
static partition, because it forces all models to time-share
GPUs through swapping, which incurs significant overhead
and causes severe SLO violations.

Prism also maintains high TPOT attainment, thanks to
its demand-aware scheduler that can dynamically balance
workloads to minimize memory contention. In contrast, QLM
exhibits lower TPOT attainment, as it tends to over-batch
requests under high load, leading to extended execution times
per iteration and increased TPOT values. Both MuxServe++
and static partition suffer from significant memory contention
at high request rates, leading to frequent request preemptions
that significantly degrade TPOT attainment.

SLO attainment vs. SLO requirements. The middle row
of Figure 7 illustrates the attainment when we set different
SLO targets. As SLO scales up, Prism quickly achieves 99%
TTFT and TPOT attainment. Specifically, it reaches 99%
TTFT and TPOT attainment at SLO scales of 20 and 22 on
the Hyperbolic trace, and 10 and 3 on the Arena-Chat trace.
In contrast, no baseline achieves 99% TTFT attainment even
at the largest SLO scale in this experiment, and their attain-
ment rates do not significantly improve as the scale increases.
Among the baselines, MuxServe++ achieves the best TTFT
performance, reaching 84.79% and 67.22% attainment at the

TTFT (Hyperbolic) TPOT (Hyperbolic)

TTFT (Arena-chat) TPOT (Arena-chat)

2 1.0 — ~ 1.0—-—% ;E) 1.0 ? 1.0 1
Q : 1 N\ : : E E :s
: € ! <
E M Ly < ! 0.8 |
©0.51 : H 0.5{—=— S-Partition 8 0.51 ¢ —=— S-Partition
% : MuxServe++ \/\ o 0.61 | MuxServe++
o : : —— QLM o ! . | —— QLM
7 : 1 —e— Ours a 1 | —e— Ours
0.0 +——— R 0.0~ — ——— — so4+0—m-r+—-"——+—+——-+—+Hop+——~+——-+——+—+—
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Rate scale Rate scale Rate scale Rate scale
q] 1.004 7 1.004 &
E 1.00 W 1.00 'E //*——Y—O—*—ﬁ 3 |
O 1 1 [1 1 I
£ 0.751 i 0.751 / ! £ 0.75 ! 0.751 bl
c 1 2 1 =] 1 |
5 | 1 / 1 : ©] ./-———"—"—+_'_H] [
8 o.50 } 0.50 1 / e S.Partition £ 0.50 : 0.50 —=— S-Partition
e k_*+_1——r—k“’—‘ MuxServe++ o A MuxServe++
Q 0.251 ! 0.251 1 —— QLM Q 0.251 ! 0.251 —— QM
o i —e— Ours n ! —— Ours
0.00 - . - — 0.00 = T T T - 00— ——+—+————— 0 00-r—"——"+—+——
10 20 30 40 10 15 20 25 30 2 4 6 8 10 12 14 16 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
SLO scale SLO scale SLO Scale SLO Scale
L L.00q7 1.00 1 " 1.00 } 1.00] i
5. ' =
[q] [! 1
€ 0.759 | 075> g 07514 0.95 T
c 1 £ 1 T |
T 05011 050 - £o0.501!] !
=R s : ! S-Partition 80301 0.90 | S Partition
© v i MuxServe++ i MuxServe++
Q0.25¢] 0.251 I —— QM Qo.257! 0.85 I —— QM
7] 1 1 —e— Ours n 1 I —e— Ours
0.00 - - - — 0.00 = . T T - 0.00 - - - — 0.80 1~ . T T r
4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
Num GPUs Num GPUs Num GPUs Num GPUs

Figure 7: End-to-end performance comparison on SLO attainments under varing scales of rates, SLOs, and number of available GPUs. The
dotted vertical lines mark where the system reaches 99% TTFT or TPOT attainment.

largest SLO scale. This gap is primarily from their inflexibil-
ity of adapting sharing policies to dynamic workloads. The
TPOT attainment of all systems increases rapidly as the SLO
scale grows. Static partitioning achieves 99% attainment on
Hyperbolic trace (scale=26), while QLM reaches 99% on
Arena-Chat trace (scale=3.5). This is because TPOT is less
sensitive to memory contention compared to TTFT. We also
observe that the Hyperbolic trace requires higher SLO scales
due to its more bursty and heavier request patterns.

SLO attainment vs. available GPUs. Finally, we evaluate
performance when provisioning more GPUs. We selected
18 models from Table 4, representing a mix of popular and
tail models with diverse load variability. To fully test the
flexibility of our scheduling strategy, we included models
of varying sizes from 1B to 8B, all of which fit within a
single 80GB GPU. This setup enables a wide range of model-
sharing combinations across GPUs. As shown in Figure 7
(last row), Prism achieves 99% TTFT and TPOT attainment
using only four and five GPUs on the two traces, respectively,
demonstrating its effectiveness in improving cost-efficiency
while maintaining performance. In comparison, all baselines
fail to reach 99% TTFT attainment even with eight GPUs,
and only a few baselines achieve 99% TPOT attainment when
seven or eight GPUs are provisioned.

7.4 Performance Analysis
Next, we provide a detailed performance breakdown to ana-

lyze the effectiveness of each design in Prism and how they
contribute to its strong end-to-end performance.

10

Flexible cross-model memory coordination. We first evalu-
ated the benefits of our flexible cross-model memory coordi-
nation by comparing with static partition using a simplified
two-model trace extracted from Arena-Chat, shown in Fig-
ure 8 (first row). We present the normalized total KV cache
usage and aggregated throughput for both methods in the last
two rows in Figure 8. As we can see, Prism’s on-demand
memory allocation allows it to use more memory for KV
cache, particularly after the 20th second, when Modell expe-
riences low demand while Model2 faces a surge in request
rates. The larger KV cache memory enables Prism to achieve
higher throughput, as shown in the last row. In contrast, un-
der static partitioning, even when Modell underutilizes its
memory, Model2 cannot leverage the unused memory due
to the static allocation boundary. This shows that Prism’s
on-demand memory allocation significantly improves mem-
ory efficiency and, in turn, enhances performance in GPU
sharing.

Model activation speed. Then, we measured how fast can
Prism activate models. We measured the activation latency
from pageable CPU memory for models ranging from 1B
to 70B parameters and summarized the results in Figure 9.
As shown, each optimization significantly reduces activation
latency. With all optimizations enabled, Prism loads small
models from 1B to 8B within 0.7s, and a medium-size 14B
model in just 1.3s, which is 5.5 faster than the baseline
that naively uses cudaMemcpyAsync and takes 7.1s. Larger
models are usually served using TP; for a 70B model that
is served using TP=8, Prism can activate it in 1.5s. Since a
TP model is already sharded and loaded in parallel among
different TP ranks, it can achieve relatively good loading

=
o
L

—— Model2

@ ' ! —— Modell
g ! i
054 ! |
g ’ Y Iy)
S v
= ! LIRN \
0.01 h SoAN_LIN mINTT TN
g 1O fRarkv pool size |
« 1
> . . 1
€5 Static limij—"_ !
g _*\/—/ —— On-demand
g | Per-model static
nn 1
210 T
3 1 W
e,
€05 I —— On-demand
2 / H Per-model static
1
0 10 20 30 40 50 60

Time (s)

Figure 8: The benefits of cross-model memory coordination. The
first figure shows the request rates. The last two figures shows the
total KV memory size and the throughout of the two models.

7.2s

70B
(TP=8)

1481

\\\\\\\\\\YE\\\\\\ 2.85
fesesesessesesesess 1.0S

7.1s

\\\\\\\\\E\};\\\\\\\\\\\\\\‘ 4.1s
DOSEOOXKX 1.

5.0s

8B \\\\}})\S\\\\\V 2.25

? 3.6s gmm@ Naive model loading
3B 0% 0

B + Pre-inited Engine

3.1s .
@R + Parallel loading

1BE5%.2¢°°

0 1 2 3 4 5 6 7 8
Activation Latency (seconds)

Figure 9: The activation time for models with different sizes. Data
is measured on H100 GPUs.

performance even without our parallel loading optimization.
These results show that Prism can prompt activate evicted
models upon receiving new requests, helping reduce SLO
violations.

Global scheduling. Next, we evaluated the benefits of our
global scheduler. In this experiment, we used two GPUs to
serve eight models. Figure 10a presents the TTFT and TPOT
attainment with the global scheduler enabled or disabled. The
results show that enabling the global scheduler significantly
improves both TTFT and TPOT attainment. To provide fur-
ther insights, we plot the average KV cache memory available
per request as it arrives on each GPU. With the global sched-
uler enabled, the load is more evenly balanced across the
two GPUs, allowing each request to access more KV cache
memory on average. In contrast, without the global scheduler,
the load is imbalanced: GPU1 shows more available memory
during the first 600 seconds, while the near-zero availability
between the 800th and 1000th seconds indicates that GPU1
is idle while GPUO is overloaded. These results demonstrate
the global scheduler’s ability to coordinate resource demands
across GPUs, avoid bottlenecks, and ultimately improve per-
formance in GPU sharing.

GPU local scheduling. We also evaluated the benefits of
GPU-local scheduling in coordinating memory between mod-
els sharing the same GPU. Here, we use two models: we fix
the SLO scale of Modell to eight and vary the SLO scales of

11

1.0 N W/ globafsah.
= S e A A '
ac.: 087 /’.‘\ o 2 J’V’ “,"" # ‘v,\‘;w ‘s ,” U““, ‘f \\'I'\H"\,'..I".
€ L .- [C] P WY MYARY
Sos6 S lvwegow| o |F !
g - go
2 0.4 —o— TTFT () & | WiogloRel SN GPU O
9 TTFT (w/o) £ o A - GPUL
@ 0.2 —®— TPOT (w/) =21 ANy (i .ol
-=- TPOT (w/o) # Y N
0.0 7 7 7 ; ; ; 0) 21
5.0 7.5 10.0 125 15.0 17.5 20.0 0 200 400 600 800 1000 1200
Rate scale Time (s)
(a) Attainment with rate scales (b) GPU load status

Figure 10: The effectiveness of global model placement scheduling.

=
o

A
- 60 1 " w/ modl
$ 0.8 £ i —— w/ mod2
€ 2 ! ‘\ —=- w/o modl
% 069 2 409 ,‘ \ —=- w/o mod2
B 5 FON\
© 044 g A A
Iy Qa0 N
E o2 w/ modl -e- w/o modl (o4 IR Y
—#— w/mod2 -®- w/o mod2 e
0.0 1 T T T r 01 T T T
1 2 3 4 5 0 10 20 30
Model2 SLO scale Time (s)

(a) Attainment with SLO scales (b) Queue length with time

Figure 11: The effectiveness of GPU local request scheduling.

Model2 to evaluate the priority-based admission control in
the GPU-local scheduling. Figure |1a shows the TTFT attain-
ment as we vary the SLO scale of Model2. Modell consis-
tently maintains high attainment, and enabling our GPU-local
scheduling improves the SLO attainment of Model2 by more
than 40%. To dive deeper, we plot the queue length of each
model in Figure 11b of one experiment run. From the queue
lengths, we clearly observe that when the local scheduler is
enabled, the system prioritizes Model2’s requests, which are
shorter but have stricter SLO requirements. Specifically, be-
tween the 10th and 20th seconds, Model2’s queue length is
noticeably lower when local scheduler is enabled. This shows
the effectiveness of GPU-local scheduling in coordinating
memory allocation across models based on their SLOs.

7.5 Large-Scale Deployment

Finally, we evaluated how effectively Prism in reducing the
cost of multi-LLM serving at scale. We served all 58 models
listed in Table 4, following common TP practices for large
models: TP=4 for 32B models [51, 52] and TP=4 or 8 for
70B models [3,31], utilizing 32 GPU in total. We sampled
58 models from the Arena-Chat trace. The Hyperbolic trace
includes only 24 models, so we generated additional traces
by sampling different time periods from the same models,
creating a larger and more representative workload.

SLO attainments vs. number of GPUs. Figure 12a shows
TTFT and TPOT attainment with increased number of GPUs.
Prism consistently outperforms all baselines, achieving nearly
99% TTFT attainment with just 16 GPUs, while MuxServe++
requires 32 GPUs to reach similar performance, and other
methods require even more. As the number of GPUs increases,
both static partition and MuxServe++ improve in TTFT and
TPOT attainment, as fewer models need to share a GPU on

E 1o 5 1.0
l: a
Z0.81 =
g 0.6 g 0'9
.64 o
g 041 é 0.8 MuxServe++
s IS —e— Ours
<421 < —s— S-Partition
9 Qo7 —— QLM
V0.0 : . : — 0 : : . . .
16 20 24 28 32 16 20 24 28 32
Num GPUs Num GPUs

(a) SLO attainment with cluster sizes scales

32+ 32+ 32+

1 5 15 30 52 80
TTFT SLO Scale

mmm S-Partition

2.0 2.5 3.0 3.5
TPOT SLO Scale

B Ours

4.0

MuxServe++ QLM

(b) Number of GPUs needed for 99% SLO attainments

Figure 12: SLO attainment and cost saving at large scales.

average. However, QLM fails to achieve better performance.
We find this to be related to its suboptimal scheduling al-
gorithm. QLM assigns incoming request groups to GPUs
without considering which models are already on GPUs. If
it detects the queue is empty, the scheduler simply selects
the first available GPU, often triggering unnecessary model
swaps. With more GPUs, requests are drained faster, resulting
in more idle GPUs and higher likelihood of swapping. Its un-
optimized swapping mechanism, which forces the inference
engine to stop and restart with a different model [44], in-
curs significant latency overhead, causing subsequent queued
requests to miss their SLOs.

Cost saving. Figure 12b shows the number of GPUs required
by each system to achieve 99% SLO attainments at different
SLO scales. If a system fails to achieve 99% attainment with
all 32 GPUs, we denote its GPU requirement as “32+”. Prism
achieves 99% TTFT SLO attainments with only 16 GPUs
when SLO scale is 5 and TPOT SLO scale is 2.0. MuxServe++
needs 20 GPUs to get 99% TTFT SLO attainments with SLO
scale > 30, while static partition needs even more GPUs or
higher SLO scale. For TPOT, static partition is the best across
all baseline, requiring 20 GPUs, while QLM and MuxServe++
need at least 29 GPUs when TPOT SLO scale < 3.0.

8 Discussion

Model activation time. With the proposed optimizations
(§5.2), Prism can activate an 8B model in 0.7s and a 70B
model in 1.5s, which is acceptable for many serving scenarios.
For scenarios with very strict TTFT requirements, Prism can
optionally disable model eviction by trading off some cost
efficiency. Notably, next-generation GPU hardware, such as
the NVIDIA GH200 [37], provides a CPU-GPU interconnect
bandwidth of 900 GB/s, which will further reduce the model
activation time. Currently, we store all model weights in CPU

12

DRAM. In scenarios where models need to be loaded from
SSD disks, Prism can apply optimizations such as pipelined
and parallel weight loading, as explored in recent work [19,
60]; we leave it to future work.

GPU compute sharing. We use MPS with a 100% SM
utilization limit per model to enable GPU compute sharing.
Under this configuration, MPS allows models to share GPU
SMs in time and opportunistically in space. This approach
already works well in practice, given the low compute utiliza-
tion relative to memory contention. In the future, we plan to
incorporate better compute resource coordination into our de-
sign by dynamically adjusting SM limits, leveraging recently
introduced techniques such as green context [34].

Reducing serving costs using heterogeneous GPUs. Some
work proposes reducing LLM serving costs by leveraging het-
erogeneous GPUs, e.g., using low-end GPUs to serve smaller
models [21,28,63]. We argue that this is an orthogonal di-
rection that does not fully address the core problem. First,
serving LLMs on heterogeneous GPUs has not seen wide
adoption in practice, as it introduces new challenges, such as
managing heterogeneous clusters. Second, due to workload
variability, systems must still provision for peak demand, re-
sulting in the same resource underutilization problem as in
homogeneous clusters. Moreover, Prism is compatible with
heterogeneous GPU clusters and can be deployed to improve
resource utilization in such settings as well.

9 Related Work

Systems serving multiple LLMs. Beyond MuxServe [16]
and QLM [40], recent systems including ServerlessLLM [18],
DEEPFLOW [24], ENOVA [25] and BLITZSCALE [60] aim
to serve LLMs in a serverless style, with techniques such as
optimized checkpoint formats [18], DRAM preloading [24],
and fine-grained autoscaling [60] to reduce cold start latency.
In contrast, Prism focuses on efficient GPU sharing during
runtime, enabling dynamic memory coordination across mod-
els. In addition, SamuLLLM [17] enhances end-to-end effi-
ciency for multi-LLM applications in offline settings, whereas
Prism is designed for online inference. AlpaServe [30] also
explores GPU multiplexing for serving multiple models, but
it does not consider auto-regressive models, which introduce
new memory coordination challenges that Prism is specifi-
cally designed to handle.

SLO-aware LLM scheduling. Recent work has explored
SLO-aware scheduling to improve LLM inference perfor-
mance, including Llumnix [50], SLOs-Serve [11], Ex-
eGPT [39], SAGESERVE [27], and MELL [42]. These sys-
tems primarily focus on request scheduling or resource allo-
cation for single-model serving. In contrast, Prism addresses
dynamic memory allocation and coordination across multiple
models to support efficient multi-LLM serving.

Memory management in LLM serving. vAttention [41] and
vTensor [57] also leverage CUDA virtual memory APIs [36]

to decouple physical and virtual memory allocation. However,
their purpose is to reduce programming complexity and im-
prove kernel efficiency for serving a single model. In addition,
their approaches need to reimplement the entire stack of cur-
rent inference engines, while our method preserves compati-
bility with the widely used PagedAttention [29] mechanism.
GPU sharing techniques. In addition to native GPU shar-
ing mechanisms (i.e., MPS [38] and MIG [38]) and widely
adopted fractional GPU techniques [1, 7, 46], recent re-
search has proposed more advanced GPU sharing strate-
gies [22,23,33,49,61,62]. However, these techniques primar-
ily focus on compute resource sharing and lack support for
memory coordination, which is a central challenge in multi-
LLM serving due to the memory-intensive, auto-regressive na-
ture of generation. Another line of work, such as S-LoRA [47]
and dLoRA [56], adderess scenarios involving a single large
base model with many lightweight adapters. In contrast,
Prism targets a broader setting by enabling serving of multiple
large base models cost efficiently.

10 Conclusion

Serving LLMs at scale is expensive, particularly for providers
hosting many models with dynamic and bursty workloads.
This paper introduces Prism, a multi-LLM serving system
that improves cost efficiency while maintaining SLO attain-
ment by fully unleashing the power of GPU sharing. Prism
achieves this by first enabling flexible cross-model memory
coordination, which allows it to dynamically adjust GPU shar-
ing policies based on runtime workloads. It then employs
a two-level scheduling algorithm to make efficient use of
GPU memory to avoid resource bottlenecks and maximize
latency performance. Evaluations on real-world traces show
that Prism delivers more than 2x cost savings and 3.3x im-
provement in SLO attainment over state-of-the-art systems.

Acknowledgement

We thank Professor Matei Zaharia for insightful discussions.
We are grateful to Hyperbolic, Novita Al, and Chatbot Arena
for providing production traces that informed our key find-
ings, and Hyperbolic, Novita Al, and NVIDIA for provid-
ing hardware support. Special thanks to the SGLang open-
source community for discussions and hardware resources.
We thank Jiangfei Duan for insights on MuxServe. We also
thank Chenxi Wang, Shi Liu, Zhenting Zhu, Yicheng Liu for
their valueable feedback. This work is supported by NSF
grants CNS-1763172, CNS-2007737, CNS-2006437, CNS-
2106838, CNS-2147909, CNS-2128653, CNS-2301343,
CNS-2330831, CNS-2403254. Sky Computing Lab is sup-
ported by gifts from Accenture, AMD, Anyscale, Cisco,
Google, IBM, Intel, Intesa Sanpaolo, Lambda, Lightspeed,
Mibura, Microsoft, NVIDIA, Samsung SDS, and SAP.

13

References

(1]

(2]

[4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

N. Agarwal. Implementing Fractional
GPUs in Kubernetes with Aliyun Scheduler.
https : / / huggingface.co / blog / NileshInfer /
implementing-fractional-gpus-in-kubernetes,
2024. Accessed: May, 2025.

A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra,
B. Gulavani, A. Tumanov, and R. Ramjee. Taming
Throughput-Latency Tradeoff in LLM Inference with
Sarathi-Serve. In /8th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 24),
2024.

M. AL Llama 3.3-70B-Instruct. https:
/ /huggingface.co/meta-1lama/Llama-3.3-70B-
Instruct, 2024. Accessed: May, 2025.

N. AL. Novita Al homepage. https://novita.ai/,
2025. Accessed: May, 2025.

T. AL Together Al Fine-tuning Guide.
https://docs.together.ai/docs/fine-tuning-
quickstart, 2025. Accessed: May, 2025.

T. AL Together Al homepage. https://
www.together.ai/, 2025. Accessed: May, 2025.

Ailiyun. GPU Sharing Scheduler for Kubernetes Cluster.
https://github.com/AliyunContainerService/
gpushare-scheduler-extender, 2023. Accessed:
May, 2025.

Amazon. Amazon Bedrock User Guide.
https://docs.aws.amazon.com/bedrock /latest/
userqguide /what - is-bedrock.html, 2025. Ac-
cessed: May, 2025.

Amazon. AWS Al Pricing. https://
aws.amazon.com/ sagemaker —ai /pricing/, 2025.
Accessed: May, 2025.

Anthropic. Anthropic Legal Summarization Guide.
https://docs.anthropic.com/en/docs /about -
claude/use-case-quides/legal-summarization,
2025. Accessed: May, 2025.

S. Chen, Z. Jia, S. Khan, A. Krishnamurthy, and P. B.
Gibbons. SLOs-Serve: Optimized Serving of Multi-
SLO LLMs. arXiv preprint arXiv:2504.08784, 2025.

K. Cheng, Z. Wang, W. Hu, T. Yang, J. Li, and
S. Zhang. Towards SLO-Optimized LLM Serving via
Automatic Inference Engine Tuning. arXiv preprint
arXiv:2408.04323, 2024.

https://huggingface.co/blog/NileshInfer/implementing-fractional-gpus-in-kubernetes
https://huggingface.co/blog/NileshInfer/implementing-fractional-gpus-in-kubernetes
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://novita.ai/
https://docs.together.ai/docs/fine-tuning-quickstart
https://docs.together.ai/docs/fine-tuning-quickstart
https://www.together.ai/
https://www.together.ai/
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://docs.aws.amazon.com/bedrock/latest/userguide/what-is-bedrock.html
https://aws.amazon.com/sagemaker-ai/pricing/
https://aws.amazon.com/sagemaker-ai/pricing/
https://docs.anthropic.com/en/docs/about-claude/use-case-guides/legal-summarization
https://docs.anthropic.com/en/docs/about-claude/use-case-guides/legal-summarization

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. Cheriyan, R. Ravi, and M. Skutella. A Simple Proof
of the Moore-Hodgson Algorithm for Minimizing the
Number of Late Jobs. Operations Research Letters,
49(6):842-843, 2021.

W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos,
T. Li, D. Li, H. Zhang, B. Zhu, M. Jordan, J. E. Gonza-
lez, and I. Stoica. Chatbot Arena: An Open Platform
for Evaluating LLMs by Human Preference, 2024.

G. Cloud. Model Garden on Vertex AIl. https:
/ /cloud.google.com/model -garden?hl=en, 2025.
Accessed: May, 2025.

J. Duan, R. Lu, H. Duanmu, X. Li, X. Zhang, D. Lin,
I. Stoica, and H. Zhang. MuxServe: Flexible Multiplex-
ing for Efficient Multiple LLM Serving. arXiv preprint
arXiv:2404.02015, 2024.

J. Fang, Y. Shen, Y. Wang, and L. Chen. Improving the
End-to-End Efficiency of Offline Inference for Multi-
LLM Applications Based on Sampling and Simulation.
arXiv preprint arXiv:2503.16893, 2025.

Y. Fu, L. Xue, Y. Huang, A.-O. Brabete, D. Ustiugov,
Y. Patel, and L. Mai. ServerlessLLM:Low-Latency
Serverless Inference for Large Language Models. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 135153, 2024.

B. Gao, Z. He, P. Sharma, Q. Kang, D. Jevdjic, J. Deng,
X. Yang, Z. Yu, and P. Zuo. Cost-Efficient Large Lan-
guage Model Serving for Multi-Turn Conversations with
CachedAttention. In 2024 USENIX Annual Technical
Conference (USENIX ATC 24), pages 111-126, 2024.

R. L. Graham. Bounds on Multiprocessing Timing
Anomalies. SIAM Journal on Applied Mathematics,
17(2):416-429, 1969.

T. Griggs, X. Liu, J. Yu, D. Kim, W.-L. Chiang, A. Che-
ung, and I. Stoica. Mélange: Cost Efficient Large Lan-
guage Model Serving by Exploiting GPU Heterogeneity.
arXiv preprint arXiv:2404.14527, 2024.

L. Han, Z. Zhou, and Z. Li. Pantheon: Preemptible
Multi-DNN Inference on Mobile Edge GPUs. In Pro-
ceedings of the 22nd Annual International Conference

on Mobile Systems, Applications and Services, pages
465478, 2024.

M. Han, H. Zhang, R. Chen, and H. Chen. Microsecond-
Scale Preemption for Concurrent GPU-Accelerated
DNN Inferences. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22),
pages 539-558, 2022.

14

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

J. Hu, J. Xu, Z. Liu, Y. He, Y. Chen, H. Xu, J. Liu,
B. Zhang, S. Wan, G. Dan, Z. Dong, Z. Ren, J. Meng,
C. He, C. Liu, T. Xie, D. Lin, Q. Zhang, Y. Yu, H. Feng,
X. Chen, and Y. Shan. DeepFlow: Serverless Large
Language Model Serving at Scale, 2025.

T. Huang, P. Chen, K. Gong, J. Hawk, Z. Bright, W. Xie,
K. Huang, and Z. Ji. Enova: Autoscaling towards cost-
effective and stable serverless 1lm serving, 2024.

Hyperbolic. Hyperbolic: The Open Access Al Cloud.
Hyperbolic Provides Affordable GPU Access and In-
ference Services for Those at the Edges of Al. https:
//hyperbolic.xyz/, 2024.

S. Jaiswal, K. Jain, Y. Simmhan, A. Parayil, A. Mallick,
R. Wang, R. S. Amant, C. Bansal, V. Riihle, A. Kulkarni,
et al. Serving Models, Fast and Slow: Optimizing
Heterogeneous LLM Inferencing Workloads at Scale.
arXiv preprint arXiv:2502.14617, 2025.

Y. Jiang, F. Fu, X. Yao, G. He, X. Miao, A. Klimovic,
B. Cui, B. Yuan, and E. Yoneki. Demystifying Cost-
Efficiency in LLM Serving over Heterogeneous GPUs.
arXiv preprint arXiv:2502.00722, 2025.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H.
Yu, J. Gonzalez, H. Zhang, and I. Stoica. Efficient Mem-
ory Management for Large Language Model Serving
with PagedAttention. In J. Flinn, M. I. Seltzer, P. Dr-
uschel, A. Kaufmann, and J. Mace, editors, Proceedings
of the 29th Symposium on Operating Systems Principles,
SOSP 2023, pages 611-626. ACM, 2023.

Z. Li, L. Zheng, Y. Zhong, V. Liu, Y. Sheng, X. Jin,
Y. Huang, Z. Chen, H. Zhang, J. E. Gonzalez, and I. Sto-
ica. AlpaServe: Statistical Multiplexing with Model
Parallelism for Deep Learning Serving. In /7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 23), pages 663—-679, Boston, MA, July
2023. USENIX Association.

Meta. Introducing Llama 3.1: Our Most Capable
Models to Date. https://ai.meta.com/blog/meta-
llama-3-1/, 2024.

J. M. Moore. An N Job, One Machine Sequencing
Algorithm for Minimizing the Number of Late Jobs.
Management Science, 15(1):102—-109, 1968.

K. K. Ng, H. M. Demoulin, and V. Liu. Paella: Low-
Latency Model Serving with Software-Defined GPU
Scheduling. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 595-610, 2023.

NVIDIA. CUDA Toolkit Documentation—
Green Contexts. https : / /
docs.nvidia.com / cuda / cuda - driver - api /

https://cloud.google.com/model-garden?hl=en
https://cloud.google.com/model-garden?hl=en
https://hyperbolic.xyz/
https://hyperbolic.xyz/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

group__CUDA__GREEN__CONTEXTS.html. Accessed:

May, 2025.

NVIDIA. NVIDIA Multi-Process Service. https:
//docs.nvidia.com/deploy/mps/index.html, 2024.
Accessed: May, 2025.

NVIDIA. CUDA Toolkit Documentation: Virtual Mem-
ory Management. https://docs.nvidia.com/cuda/
cuda-driver-api/group_ CUDA__ VA.html, 2025.
Accessed: May, 2025.

NVIDIA. NVIDIA Grace Hopper Superchip, 2025.
Accessed: May, 2025.

NVIDIA. NVIDIA Multi-Instance GPU. https:
/ /www.nvidia.com/en-us/technologies/multi-
instance-gpu/, 2025. Accessed: May, 2025.

H. Oh, K. Kim, J. Kim, S. Kim, J. Lee, D.-s. Chang, and
J. Seo. Exegpt: Constraint-Aware Resource Scheduling
for LLM Inference. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pages 369-384, 2024.

A. Patke, D. Reddy, S. Jha, H. Qiu, C. Pinto,
C. Narayanaswami, Z. Kalbarczyk, and R. Iyer. Queue
Management for SLO-Oriented Large Language Model
Serving. In Proceedings of the 2024 ACM Symposium
on Cloud Computing, SoOCC 24, page 18-35, New York,
NY, USA, 2024. Association for Computing Machinery.

R. Prabhu, A. Nayak, J. Mohan, R. Ramjee, and A. Pan-
war. VAttention: Dynamic Memory Management for
Serving LLMs without PagedAttention, 2024.

L. Qianli, H. Zicong, C. Fahao, L. Peng, and G. Song.
Mell: Memory-Efficient Large Language Model Serving
via Multi-GPU KV Cache Management. arXiv preprint
arXiv:2501.06709, 2025.

R. Qin, Z. Li, W. He, J. Cui, F. Ren, M. Zhang, Y. Wu,
W. Zheng, and X. Xu. Mooncake: Trading More Stor-
age for Less Computation—A KVCache-Centric Archi-
tecture for Serving LLM Chatbot. In 23rd USENIX
Conference on File and Storage Technologies (FAST
25), pages 155-170, 2025.

QLM Project. QLM: Quantum Language Model Project.
https://github.com/QLM-project /QLM/blob/
eeabb622e2c4c6abd705876880£50014¢c4d9d0dl /
glm/endpoints/endpoint.py#L57, 2024. Accessed:
May, 2025.

Redis. Redis List documentation. https://redis.io/
docs/latest/develop/data-types/lists/, 2025.
Accessed: May, 2025.

15

[46]

[47]

(48]

[49]

(50]

(51]

[52]

[53]

[54]

[55]

[56]

Run:ai. Quickstart: Launch Workloads with GPU Frac-
tions. https://docs.run.ai/v2.17/Researcher/
Walkthroughs / walkthrough - fractions/, 2023.
Accessed: May, 2025.

Y. Sheng, S. Cao, D. Li, C. Hooper, N. Lee, S. Yang,
C. Chou, B. Zhu, L. Zheng, K. Keutzer, et al. S-LoRA:
Serving Thousands of Concurrent LoORA Adapters. Pro-
ceedings of Machine Learning and Systems, 2024.

Y. Sheng, S. Cao, D. Li, B. Zhu, Z. Li, D. Zhuo, J. E.
Gonzalez, and I. Stoica. Fairness in Serving Large
Language Models. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 24),
pages 965-988, Santa Clara, CA, July 2024. USENIX
Association.

F. Strati, X. Ma, and A. Klimovic. Orion: Interference-
Aware, Fine-Grained GPU Sharing for ML Applications.
In Proceedings of the Nineteenth European Conference
on Computer Systems, pages 1075-1092, 2024.

B. Sun, Z. Huang, H. Zhao, W. Xiao, X. Zhang, Y. Li,
and W. Lin. Llumnix: Dynamic Scheduling for Large
Language Model Serving. In /8th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 24), pages 173-191, 2024.

Q. Team. Qwen2.5-32b. https://huggingface.co/
Qwen/Qwen2.5-32B, 2024. Accessed: May, 2025.

Q. Team. Qwen2.5: A Party of Foundation Models.
https://qwenlm.github.io/blog/qwen2.5/, 2024.
Accessed: May, 2025.

X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge,
J. Pan, Y. Song, B. Li, J. Singh, et al. OpenHands: An
Open Platform for Al Software Developers as Generalist
Agents. arXiv preprint arXiv:2407.16741, 2024.

Z. Wang, S. Li, Y. Zhou, X. Li, R. Gu, N. Cam-
Tu, C. Tian, and S. Zhong. Revisiting SLO and
Goodput Metrics in LLM Serving. arXiv preprint
arXiv:2410.14257, 2024.

K. Wiggers. OpenAl Launches Flex Process-
ing for Cheaper, Slower AI Tasks. https://
techcrunch.com/2025/04/17/openai-launches-
flex - processing - for - cheaper - slower - ai -
tasks/, 2025. Accessed: May, 2025.

B. Wu, R. Zhu, Z. Zhang, P. Sun, X. Liu, and X. Jin.
dLoRA: Dynamically Orchestrating Requests and
Adapters for LoORA LLM Serving. In /8th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 24), pages 911-927, 2024.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://github.com/QLM-project/QLM/blob/eea5b622e2c4c6abd705876880f50014c4d9d0d1/qlm/endpoints/endpoint.py#L57
https://github.com/QLM-project/QLM/blob/eea5b622e2c4c6abd705876880f50014c4d9d0d1/qlm/endpoints/endpoint.py#L57
https://github.com/QLM-project/QLM/blob/eea5b622e2c4c6abd705876880f50014c4d9d0d1/qlm/endpoints/endpoint.py#L57
https://redis.io/docs/latest/develop/data-types/lists/
https://redis.io/docs/latest/develop/data-types/lists/
https://docs.run.ai/v2.17/Researcher/Walkthroughs/walkthrough-fractions/
https://docs.run.ai/v2.17/Researcher/Walkthroughs/walkthrough-fractions/
https://huggingface.co/Qwen/Qwen2.5-32B
https://huggingface.co/Qwen/Qwen2.5-32B
https://qwenlm.github.io/blog/qwen2.5/
https://techcrunch.com/2025/04/17/openai-launches-flex-processing-for-cheaper-slower-ai-tasks/
https://techcrunch.com/2025/04/17/openai-launches-flex-processing-for-cheaper-slower-ai-tasks/
https://techcrunch.com/2025/04/17/openai-launches-flex-processing-for-cheaper-slower-ai-tasks/
https://techcrunch.com/2025/04/17/openai-launches-flex-processing-for-cheaper-slower-ai-tasks/

[57] J. Xu, R. Zhang, C. Guo, W. Hu, Z. Liu, F. Wu, Y. Feng,
S. Sun, C. Shao, Y. Guo, et al. vTensor: Flexible Virtual
Tensor Management for Efficient LLM Serving. arXiv
preprint arXiv:2407.15309, 2024.

[58] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and
B.-G. Chun. Orca: A Distributed Serving System
for Transformer-Based Generative Models. In 16th
USENIX Symposium on Operating Systems Design and

Implementation (OSDI 22), pages 521-538, 2022.

[59] ZeroMQ. ZeroMQ Website. https://zeromg.org/,

2025. Accessed: May, 2025.

[60] D.Zhang, H. Wang, Y. Liu, X. Wei, Y. Shan, R. Chen,
and H. Chen. Fast and Live Model Auto Scaling with
O (1) Host Caching. arXiv preprint arXiv:2412.17246,

2024.

[61] S.Zhang, Q. Chen, W. Cui, H. Zhao, C. Xue, Z. Zheng,
W. Lin, and M. Guo. Improving GPU Sharing Perfor-
mance through Adaptive Bubbleless Spatial-Temporal
Sharing. In Proceedings of the Twentieth European Con-

ference on Computer Systems, pages 573—-588, 2025.

[62] Y. Zhang, H. Yu, C. Han, C. Wang, B. Lu, Y. Li, Z. Jiang,
Y. Li, X. Chu, and H. Li. SGDRC: Software-Defined
Dynamic Resource Control for Concurrent DNN In-
ference on NVIDIA GPUs. In Proceedings of the
30th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pages 267-281,

2025.

[63] J. Zhao, B. Wan, Y. Peng, H. Lin, and C. Wu. LLM-PQ:
Serving LLM on Heterogeneous Clusters with Phase-
Aware Partition and Adaptive Quantization. arXiv

preprint arXiv:2403.01136, 2024.

[64] L. Zheng, L. Yin, Z. Xie, J. Huang, C. Sun, C. H. Yu,
S. Cao, C. Kozyrakis, I. Stoica, J. E. Gonzalez, C. Bar-
rett, and Y. Sheng. Efficiently Programming Large
Language Models using SGLang, 2023.

A Appendix

A.1 Analysis of Algorithm 1
A.1.1 KVPR Bound Analysis

The global model placement algorithm ensures that the maxi-
mum KV pressure ratio (KVPR) across all GPUs is bounded
by the maximum KVPR in the optimal placement. We give
the following analysis.

Let KV PRopr be the minimum possible maximum KVPR
achievable by any optimal placement. Let KV PR, be the
maximum KVPR produced by Algorithm I. We want to show
KV PR,,4 1s bounded by KV PRopr.

16

Bottleneck Analysis: Focus on the GPU, denoted as gax,
that achieves the highest KVPR (KV PR,,,,) given by Algo-
rithm [’s placement. Let my be the last model assigned to
this GPU gnax. Let Wyerore and Spefore Tepresent the total
SLO-weighted request rate and shared KV memory on g«
just before model my, was assigned. The final state on this
GPU is KVPR,ux = (Whef()re + dk)/(sbef()re - Wk), where dj,
is the SLO-weighted request rate (ry/sy) and wy, is the mem-
ory weight of model my. Similar to Graham [20], this proof
aims to demonstrate that both the state before m; was added
and the contribution of my. are bounded relative to KV PRopr.
Specifically, it seeks to establish two conceptual bounds:

¢ Bound 1 (Related to state before ;): The KVPR on
Whefore
Sbefore

mum among all GPUs at that moment due to the algo-
rithm’s greedy choice. This minimum KVPR is typi-
cally related to the average “pressure” across the system,
which, in turn, is argued to be no larger than the opti-
mal maximum pressure. This suggests the inequality:
Whef()re/Sbef()re < KVPROPT

Zmax just before my’s assignment, , was the mini-

* Bound 2 (Related to model m1;): The “pressure” exerted
by the critical model m; must be handled by the optimal
solution. A fundamental lower bound on the optimal so-
lution is the maximum pressure any single model would
exert if placed alone on an otherwise empty GPU, i.e.,
KVPROPT > dk/(Cf Wk).

The final step involves integrating these insights to bound

_ Wb(’f'(rre+dk
KVPRmaX - Sbeforefwk ’
we substitute these into the numerator and get KV PR, <
KVPRopr - (1+—5—).

Semax —Wk

Following Graham’s proof [20],

A.1.2 TP Support

The model placement algorithm in Algorithm | seamlessly
integrates models utilizing Tensor Parallelism (TP). We con-
ceptualize a TP model requiring ¢p_size GPUs as being com-
posed of ¢p_size distinct parts. For scheduling purposes, we
create ¢ p_size entries in the sorted model list for such a model,
assigning each entry [pilsize of the original weight and request
rate. A beneficial property emerges from this decomposition:
since these entries have identical fi values, they remain ad-
jacent after sorting. This adjacency increases the likelihood
that, as the algorithm iterates, these parts are initially assigned
to different GPUs due to rising KVPRs. To ensure the distri-
bution, if assigning a TP part to the GPU with the minimum
KVPR would result in collocating it with another part of the
same original model, we instead assign it to the GPU exhibit-
ing the second-lowest KVPR. Through this decomposition
strategy and modified assignment rule, our algorithm effec-
tively considers and manages the placement of TP models
alongside single-GPU models.

https://zeromq.org/

Mean E2E (s) P95 E2E (s) Req Tput (1/s) Token Tput (t/s)

MuxServe 7.40 18.85 7.97 3363.53
MuxServe++ 5.25 12.09 7.98 3353.09
Mean TTFT (s) P95 TTFT (s) Mean TPOT (ms) P95 TPOT (ms)
MuxServe 1.47 11.04 21.21 31.95
MuxServe++ 0.089 0.320 18.82 33.97

Table 5: Performance comparison of MuxServe and MuxServe++

A.2 MuxServe Calibration

We evaluated the performance of MuxServe++ and MuxServe
using three Llama-3.1-8B models under different request rates
over a 10-minute period: 199 requests/min, 262 requests/min,
and 22 requests/min. All experiments were conducted under
the same and consistent conditions. The results are shown in
Table 5. As we can see, MuxServe++ achieves comparable or
even better performance.

17

	Introduction
	Background
	Motivation
	Workload Implications for GPU Sharing
	Limitations of Existing Approaches

	Overview
	Enabling Flexible GPU Sharing
	Cross-Model Memory Coordination
	Fast Model Activation

	Two-Level Demand-Aware Scheduling
	The Scheduling Problem
	Global Model Placement Scheduling
	GPU-Local Request Scheduling

	Implementation and Evaluation
	Implementation
	Experimental Setup
	End-to-End Performance
	Performance Analysis
	Large-Scale Deployment

	Discussion
	Related Work
	Conclusion
	Appendix
	Analysis of Algorithm 1
	KVPR Bound Analysis
	TP Support

	MuxServe Calibration

