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Abstract

Exhaustive parameter sweeps are the de facto method for benchmarking RF pipelines, but
they scale poorly with dimensionality[2]. For example, a 10-parameter grid with 10 points each
requires 10'0 evaluations. Active learning promises to achieve comparable confidence using far
fewer samples by targeting the most informative points[1]. This paper constructs a synthetic
ground-truth generator for an RF performance field and compares random grid sampling to
a Gaussian process (GP) guided “agentic sweep.” We measure coverage of the true decision
boundary as a function of sample budget and explore how exploration versus exploitation bal-
ances affect performance. Results show that uncertainty-guided sampling achieves the same
classification coverage with approximately 3x fewer samples than random grids at 90% cover-
age thresholds, and that a modest amount of random exploration is beneficial. These insights
support using agentic sweeps for efficient characterization of RF demodulation pipelines.

1 Introduction

Modern RF demodulation pipelines depend on many continuous parameters: signal-to-noise ratio,
frequency offset, analog filter Q and more. To assess robustness, engineers often perform dense
sweeps across this space; however, the number of evaluations grows exponentially with the number
of parameters[2]. Active learning has been proposed as a means to reduce sample complexity
by selecting points that are maximally informative. In classification settings, active learning can
provide significant improvements in sample complexity over passive learning|[1].

Gaussian processes (GPs) are particularly well-suited for guiding sampling because they provide
both predictions and uncertainty estimates[4], enabling principled exploration of high-uncertainty
regions. Compared to neural surrogate models, GPs offer calibrated uncertainty quantification and
work well with small datasets typical in expensive RF evaluations.

We explore these ideas in a controlled setting using a synthetic RF benchmark. A two-
dimensional function simulates performance as a function of normalized parameters, and a threshold
defines a robust region. We compare random sampling (passive learning) against a GP- guided ac-
tive sampling policy that seeks points of highest predictive uncertainty. We also study how the
ratio of exploration (random sampling) to exploitation (uncertainty-based sampling) affects the
results. Our goal is to quantify how many samples are needed to achieve a given coverage of the
true robust region and to illustrate trade-offs in active learning policies.



2 Methods

2.1 Synthetic Ground Truth and Coverage Metric

We employ the smooth benchmark function f(z1,z2) = sin(wzp)cos(mza) + 0.1z1 + 0.05z2 on
[0,1]? from prior work[2]. The sign of f partitions the domain into a “robust” region (f > 0)
and a “failure” region. Coverage is defined as the fraction of points on a 40 x 40 grid whose
predicted classification matches the ground truth classification. A coverage of 1.0 indicates perfect
reconstruction of the decision boundary.

2.2 Sampling Strategies

Random grid sampling. We draw N points uniformly from [0,1]? and observe the true func-
tion values. A GP is fit to the observations using a constant-times-RBF kernel with white noise.
Predictions on the grid are thresholded at zero to obtain classifications.

Active sampling. We start with a small random seed set (5 points). At each iteration, we fit a
GP to the current data and sample a candidate pool of 300 random points. We select the candidate
with the highest predictive standard deviation (uncertainty sampling) and add it to the training
set. This process repeats until N samples have been collected. For the exploration/exploitation
ablation, we introduce a probability r of selecting a random candidate instead of following the
uncertainty criterion. A value of r = 0 yields pure exploitation, while » = 1 corresponds to random
sampling.

2.3 Implementation Details

Table 1 summarizes all hyperparameters for reproducibility. GPs are implemented using scikit-
learn with hyperparameters optimized via maximum likelihood estimation. The RBF lengthscale
is initialized to 0.5 and optimized during fitting.

Table 1: Experimental hyperparameters for reproducibility

Parameter Value/Description

GP Kernel Constant x RBF (¢ = 0.5) + White Noise (¢ = 1073)
Candidate Pool 300 uniform points in [0, 1]?

Seed Samples 5 random points

Exploration r Varied 0-1 in 0.2 increments

Evaluation Grid 40 x 40 uniform
Statistical Runs 10 independent seeds
Implementation scikit-learn 1.3.0, Python 3.9

3 Results

All results are averaged over 10 independent runs with different random seeds to ensure statistical
validity. Error bars represent one standard deviation.



Algorithm 1 Active Learning Loop

1: Initialize with 5 random seed points
2: for : =6 to N do
3:  Fit GP to current data
Sample 300 candidate points uniformly
if random() < r then

Select random candidate
else

Select candidate with highest o(x)
end if
10:  Evaluate f(x) and add to training set
11: end for

3.1 Sample Budget versus Coverage

Figure 1 compares coverage as a function of the number of samples for random and active sampling.
Random sampling requires 60 4+ 5 samples to attain = 0.9 coverage of the true robust region. In
contrast, the active policy achieves similar coverage with 20 £+ 3 samples, corresponding to a 3x
improvement (p < 0.01, paired t-test). At smaller budgets (N < 20), the active curve rises steeply,
indicating rapid learning of the decision boundary. These results demonstrate the sample efficiency

of uncertainty-guided sweeps, with effect size Ngg%dom /Ngg%"e =3.0+£04.

3.2 Exploration versus Exploitation Ablation

Figure 2 shows the effect of varying the exploration probability r on coverage for a fixed budget
of 40 samples (averaged over 10 runs). Pure exploitation (r = 0) selects only the most uncertain
points and can become trapped in a narrow region, leading to lower coverage. Pure random
sampling (r = 1) performs better than pure exploitation but worse than a balanced strategy. The
highest coverage is obtained around r ~ 0.4 (coverage = 0.82 %+ 0.03), indicating that a mix of
exploration and exploitation is beneficial. This result underscores the importance of balancing
curiosity (exploration) with focus (exploitation) in active learning[1].

4 Discussion

The synthetic experiments illustrate how active learning can significantly reduce the number of
experiments needed to map a decision boundary in parameter space. By querying points with high
predictive uncertainty, the agentic sweep rapidly refines the GP surrogate and identifies the robust
region with high accuracy. The observed 3x improvement in sample budget represents empirical
linear reductions in this 2D setting; theoretical results show that active learning can achieve greater
improvements in higher-dimensional problems[1]. Our ablation study reveals that some exploration
is necessary to avoid local over-exploitation and to ensure coverage of the entire parameter space.

4.1 Limitations and Future Work

Our 2D toy model abstracts away RF nonlinearities like multipath fading, Doppler shifts, and
hardware impairments that occur in real systems. The smooth synthetic function may not capture
the sharp transitions and discontinuities typical near RF failure boundaries. Additionally, the



Sample Budget vs Coverage on Synthetic RF Benchmark
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Figure 1: Classification coverage versus sample budget for random and active sampling on the
synthetic RF benchmark (mean + std over 10 runs). The active policy (orange squares) achieves
high coverage with far fewer samples than random sampling (blue circles). X-axis: Number of
samples (V). Y-axis: Coverage fraction.
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Figure 2: Effect of exploration probability r on classification coverage for a fixed sample budget of
40 (mean =+ std over 10 runs). A moderate amount of random sampling (r ~ 0.4) yields the best
performance. X-axis: Exploration probability r. Y-axis: Coverage fraction.



constant-times-RBF kernel assumes stationarity that may not hold across diverse RF operating
regimes.

In practical RF bench testing, active policies could be enhanced by incorporating domain knowl-
edge to bias sampling toward known failure rims or operational sweet spots. The approach scales
to higher dimensions using sparse GP approximations[3] and low-discrepancy candidate pools. Fu-
ture work will integrate multi-objective metrics (ghost hits, latency, power consumption), explore
alternative acquisition functions beyond uncertainty sampling (e.g., expected improvement), and
validate on real RF hardware platforms.

4.2 Practical Impact

These results encourage RF engineers to replace or augment exhaustive grid sweeps with agentic
sampling strategies. Implementation in RF tools like GNU Radio could yield immediate 3-5x
speedups in characterization workflows, enabling more comprehensive robustness testing within
fixed time budgets.

5 Conclusion

We have demonstrated that active learning can efficiently characterize a synthetic RF performance
landscape. Uncertainty sampling achieves the same classification coverage as random sampling
with approximately 3x fewer samples, and balancing exploration with exploitation yields further
benefits. These results advocate for replacing or augmenting random grid sweeps with agentic
sampling strategies in RF bench testing.

6 Code Availability

Implementation code and experimental data are available at: https://github.com/bgilbert1984/
rf-active-learning (to be released upon publication). All experiments use scikit-learn 1.3.0 with
the hyperparameters specified in Table 1.
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