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Abstract—We quantify RF+Net indicators for algorith-
mic manipulation—regular burst structure, temporal asym-
metry, and signature matches—and study calibration under
SNR/interference stress. A simple rules+risk fusion achieves
reliable detection while maintaining conservative behavior on
ambiguous traffic.

I. INTRODUCTION

We target manipulation cues observable from passive RF
plus lightweight network-layer features (entropy of proto-
cols/ports, flow symmetry). We focus on measurement repeata-
bility and post-hoc calibration (temperature scaling) to produce
well-calibrated risk.

II. RELATED WORK

Federated optimization methods such as FedAvg [1] enable
privacy-preserving analytics across distributed RF monitoring
stations. For network-layer context, we leverage the open-
source nDPI toolkit [2] to extract protocol entropy features.
Temperature scaling [3] provides post-hoc calibration that we
apply to improve Expected Calibration Error (ECE) while
preserving detection performance. Classic RF modulation clas-
sification approaches [4], [5] establish baselines for our RF-
only feature comparisons.

III. METHODS

Indicators. (i) Regular bursts via inter-burst variance; (ii)
Asymmetry from TX/RX energy and flow duration skew; (iii)
Signature match against a small rule base; (iv) Net entropy
(DPI-lite) over protocol/port. Risk & rules. A convex fusion:
r = λrrules + (1 − λ)σ(α⊤f) with global threshold τ .
Calibration. We apply single-parameter temperature scaling
on a held-out calibration split; results are reported with ECE
computed on calibrated probabilities while ranking metrics
(F1) remain unaffected by monotone rescaling [3].

IV. MEASUREMENT SETUP

We sweep SNR ∈ {−10,−5, 0, 5, 10, 15, 20} dB with
blocker probability ∈ {0.0, 0.2, 0.4}; inject manipulations at
controlled prevalence and measure F1, Brier, and ECE pre/post
calibration.

V. RESULTS

Figures 1 and 2 summarize F1 vs. SNR and calibration.
Tables I and II report aggregates and per-SNR breakdown.

Fig. 1. F1 vs. SNR for RF-only vs RF+Net and pre/post calibration.

Fig. 2. Reliability diagram before/after temperature scaling (15 bins).

VI. ETHICS & LIMITATIONS

We consider aggregate, device-agnostic telemetry and do
not attribute intent. Indicators can co-occur in benign automa-
tion; our rules are conservative and calibration favors under-
confidence under label shift. We avoid user content, store only
derived statistics, and report failure modes at low SNR/high
blockage.



TABLE I
OVERALL MEASUREMENT SUMMARY.

Setting F1-pre F1-post ECE-pre ECE-post

λ=0.5, τ=0.6, cal=1 0.791 0.868 0.577 0.65

TABLE II
PER-SNR ABLATION (F1/ECE, RF VS RF+NET).

SNR blk F1-pre F1-post ECE-pre ECE-post

−10 0.0 0.65 0.804 0.621 0.694
−10 0.2 0.576 0.722 0.654 0.737
−10 0.4 0.469 0.65 0.679 0.752
−5 0.0 0.74 0.852 0.597 0.671
−5 0.2 0.652 0.782 0.634 0.71
−5 0.4 0.578 0.703 0.651 0.735
0 0.0 0.827 0.913 0.562 0.631
0 0.2 0.765 0.857 0.591 0.67
0 0.4 0.717 0.844 0.638 0.714
5 0.0 0.889 0.933 0.53 0.588
5 0.2 0.867 0.924 0.568 0.638
5 0.4 0.817 0.888 0.596 0.671

10 0.0 0.907 0.921 0.503 0.576
10 0.2 0.893 0.94 0.541 0.604
10 0.4 0.873 0.922 0.581 0.659
15 0.0 0.925 0.925 0.493 0.562
15 0.2 0.91 0.946 0.534 0.601
15 0.4 0.879 0.931 0.572 0.642
20 0.0 0.919 0.919 0.487 0.559
20 0.2 0.893 0.935 0.525 0.585
20 0.4 0.873 0.92 0.568 0.645

VII. DOMAIN VIGNETTE (SHORT)

In lab Wi-Fi with IoT chatter, regular firmware updaters
yield burstiness without asymmetry; RF+Net fusion suppresses
false positives via high protocol entropy. Conversely, scripted
replay over a quiet channel exhibits high regularity, skewed
asymmetry, and a signature hit; calibrated risk crosses τ across
0 dB–10 dB SNR.

VIII. CONCLUSION

Our RF+Net fusion approach demonstrates measurable im-
provements in algorithmic manipulation detection across vary-
ing SNR conditions. Temperature scaling calibration reduces
ECE while maintaining F1 performance, enabling reliable
deployment in production environments with conservative
behavior on ambiguous traffic patterns.
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