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Abstract—Which  exploration policy finds robustness

cliffs fastest under fixed budgets? We ablate —--focus
€ {boundary, runtime, robustness, balanced} atop our
agentic sweep framework [1], measuring (i) time-to-first-cliff,
(ii) area-under-uncertainty, and (iii) policy ranking under fixed
wall-clock and evaluation budgets. Results show that explicitly
boundary-seeking acquisitions dominate low-budget discovery,
while balanced policies win under tight runtime constraints
when end-to-end system effects (ghost cost [2], scheduler
overhead [3], and SLA tails [4]) are included.

I. INTRODUCTION

Active learning accelerates robustness discovery versus uni-
form grids [1], but the best policy depends on operational
constraints and downstream costs. We formalize an ablation
across four foci that emphasize: boundary discovery, wall-
clock efficiency, bulk robustness mapping, or a principled
balance of the three (including ghost-mode cost [2] and latency
envelopes [4]).

The critical question for fielded RF systems is not just
whether active learning works, but which acquisition policy
optimizes discovery under real operational constraints. Prior
work established the agentic sweep framework [1] and char-
acterized ghost detection costs [2], scheduler overhead [3],
and SLA envelope validation [4]. This work synthesizes these
components into a comprehensive policy comparison.

II. METHODS

A. Policies and Acquisition Functions

Let p(x), 0(x) be the GP posterior (or ensemble surrogate)
over robustness y(x), T a target threshold (e.g., 0.8), and &
an exploration scale. We define four acquisitions:

poundary (X) = _’N(X) - T’ + Ko (x), (D

—|u(x) = T| + ro(x)

Gruntime (X) = E)Et(x) s ()
Grobustness (X) = f1(x) + Ko (x), 3

Gbalanced (X) =\ Gpoundary + A2 (_ﬁghost(x)) + A3 (‘@O.QQ (X)
“)

where cost includes measured per-eval wall-clock (scheduler-
aware [3]), Pghost comes from the GhostAnomalyDetector [2],
and @0,99 is the p99 TTA estimate [4].

The boundary policy explicitly seeks decision boundaries
by maximizing proximity to threshold 7" while maintaining
exploration via uncertainty o(x). The runtime policy divides

acquisition value by estimated wall-clock cost, optimizing
information per unit time. The robustness policy focuses
on high-robustness regions using standard upper confidence
bounds. The balanced policy combines boundary discovery
with ghost avoidance and SLA compliance through weighted
multi-objective optimization.

B. Metric Suite

Time-to-first-cliff (TFC). Let 5, be the k-th batch; define
TFC as evaluations consumed until the first point x satisfies
y(x) < T and intersects the true (or high-res) boundary rim.

Area-under-uncertainty (AUU). AUU= ) _, o(x)Ax
after budget B; lower is better.

Policy ranking under budgets. We report normalized ranks
across eval-limited (fixed N) and time-limited (fixed wall-
clock) settings.

These metrics capture complementary aspects of exploration
efficiency: TFC measures discovery speed, AUU quantifies
global uncertainty reduction, and ranking provides budget-
aware comparisons across operational constraints.

C. System Hooks and Scheduler

We use SignallIntelligenceSystem for measure-
ments and the drift-free parallel scheduler [3] for fair wall-
clock comparisons. Ghost and SLA side-channels are logged
to support balanced scoring.

def acquisition(x, focus, models, costs):
mu, sig = models["gp"].predict (x)
T=0.8; k=0.2
if focus == "boundary":
return —(abs(mu - T)) + kx*sig
if focus == "runtime":
c = max(costs.get(x, 1.0), le-3)
return (-(abs(mu - T)) + kxsig) / c
if focus == "robustness":
return mu + kxsig
if focus == "balanced":
pghost = models["ghost"].predict (x)
P99 = models["sla_p99"] .predict (x)
) return (-(abs(mu - T)) + kxsig) — 0.5%

pghost - 0.001xp99
raise ValueError ("unknown focus")

def run_agentic (focus, budget_evals,
budget_time_s, pool):
t0 = time.time(); evals = 0; seen = [];
cliff_at = None

while evals < budget_evals and (time.time
()-t0) < budget_time_s:
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Fig. 1. Time-to-first-cliff (lower is better) across policies at fixed evaluation
budgets; violin/box overlay across seeds.

X = argmax_over_pool (lambda u:
acquisition(u, focus, models,
costs), pool)

y, pghost, p50, p9%9, cost = evaluate_x
(x) # hooks into core.py +
scheduler

update_models (x, y, pghost, p99);
costs[x] = cost

seen.append((x, y, pghost, p99, cost))

; evals += 1
if cliff_at is None and y < 0.8:
cliff_at = evals
return seen, cliff_at
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Listing 1. Policy switch and loop (abbreviated)

The implementation leverages the established Signallntel-
ligence ecosystem, ensuring consistency with prior validation
work while enabling direct policy comparisons under identical
experimental conditions.

ITI. RESULTS
A. Time-to-First-Cliff

Figure 1 shows TFC distributions across seeds for each
policy at fixed eval budgets. boundary finds cliffs earliest;
runtime trails when costs vary; balanced narrows the gap
under tight wall-clock limits.

The boundary policy’s explicit focus on threshold proxim-
ity yields consistent first-discovery advantages, particularly in
low-budget regimes where exploration efficiency is paramount.
The runtime policy shows higher variance due to cost esti-
mation uncertainty, while balanced demonstrates competitive
performance when ghost and SLA penalties are active.

B. Area-Under-Uncertainty

Figure 2 reports AUU after equal wall-clock time. robust-
ness reduces global uncertainty fastest in high-SNR interiors;
boundary concentrates uncertainty reduction near rims; bal-
anced is best overall when ghost and SLA penalties are active.

Global uncertainty reduction reveals different policy
strengths: robustness excels at dense interior mapping,
boundary efficiently reduces rim uncertainty, and balanced
optimizes total system utility under operational constraints.

Fig. 3. Aggregate policy ranking under fixed evaluation and time budgets
(higher is better).

C. Policy Ranking Under Fixed Budgets

Figure 3 aggregates normalized ranks over (eval-limited,
time-limited, cost-augmented) settings. boundary dominates
early discovery; balanced wins under operational constraints.

The ranking analysis reveals that optimal policy choice
depends critically on budget type and operational context. Pure
evaluation budgets favor boundary, while time-constrained
deployments with ghost and SLA costs favor balanced.

IV. DISCUSSION

Operational takeaways. If the mission is “find the cliff
ASAP)” choose boundary. If wall-clock and downstream
penalties matter, balanced offers the best total utility by
incorporating ghost cost [2] and latency tails [4]. runtime is a
pragmatic compromise when compute markets are tight, while
robustness is ideal for dense interior maps.

Policy selection framework. We recommend a decision
tree: For rapid threat assessment under evaluation budgets,
use boundary. For operational deployments with ghost detec-
tion active [2], use balanced. For comprehensive robustness
characterization, use robustness. For cost-constrained envi-
ronments, use runtime.

Integration with prior work. This policy framework builds
naturally on the agentic sweep foundation [1] while incorpo-
rating lessons from ghost detection [2], scheduling [3], and
SLA validation [4]. The result is a unified acquisition policy
suite for operational RF robustness discovery.

V. CONCLUSION

Policy choice should be budget- and cost-aware. In our
ablation, boundary excels at first discovery; balanced wins
in real deployments where false alarms and latency matter.



Future work: contextual bandits that switch focus on-the-fly
as budgets and risk profiles evolve.

The systematic comparison of acquisition policies provides

actionable guidance for RF system validation under diverse
operational constraints. By incorporating end-to-end system
costs from the established validation pipeline [1], [2], [3],
[4], this work completes the policy framework for production
robustness discovery.
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