Cross-Domain Integrations for Scientific Data
Streams with Attention-Based Middleware

Benjamin J. Gilbert

Spectrcyde RF Quantum SCYTHE, College of the Mainland
bgilbert2@com.edu
ORCID: https://orcid.org/0009-0006-2298-6538

Abstract—We study cross-domain integrations (JWST, ISS,
LHC, GPS) with heterogeneous external APIs. Using adapters
that model rate limits, latency jitter, schema drift, and outages,
we compare naive polling against an attention-based middleware
with token-bucket rate limiting, circuit breakers, RMS-style
normalization, caching (TTL), exponential backoff with jitter,
and hedged requests. We report success rate, latency (mean,
p95), freshness, retry overhead, rate-limit compliance, and outage
impact.

I. INTRODUCTION

External scientific services expose varied shapes: JIWST-like
batch products, ISS telemetry streams, LHC bursts, GPS con-
tinuous fixes. Integrators contend with rate limits, latency jitter,
schema drift, and transient outages. We present an attention-
based middleware that allocates request budget across adapters
by capability, reliability, and performance, while enforcing rate
limits and defending with caching, retries, and hedging. We
quantify extensibility (plug-in adapters) and resilience (steady
success, low tails, high freshness) against naive polling.

II. RELATED WORK

Streaming middleware uses backoff, circuit breakers, and
caches to tame external APIs; attention mechanisms weight
choices by utility. Our approach fuses both: attention scores
steer adapter selection while classic resilience primitives
harden each link. We emulate four scientific sources to reveal
integration trade-offs.

III. METHODS
A. Adapters

Each source has a latency distribution (log-normal with
mean), failure probability p;, schema-drift probability pg,
and a rate limit R req/s. A cache with TTL avoids refetch;
served-from-cache latency is ~ 5ms.

B. Variants

naive_poll: fixed poll rate, no rate limiting, no re-
tries/caching. retry_only: up to 3 retries with jittered expo-
nential backoff. cache_only: naive polling with TTL caches.
attn_rl: attention-weighted budget allocation + token buckets
+ circuit breakers. attn_full: attn_rl + TTL caching + hedged
requests (second try fired at the 0.9-quantile per-source) +
schema normalization (reduces drift errors).

Success Rates

Success Rate

@ S e N N
N N N S
N & (;é, 7 D

%,
%
%

&7
N
kS

Fig. 1: Success rate: naive=0.000, retry=0.000, cache=0.000,
attn_rl1=0.000, attn_full=0.000.

C. Attention Score

Score for source i: z; = w.C; + we(1l/u;) + w.(1 —
pfi) +wTTL, 1. softmax yields weights; budget is allocated
proportionally subject to per-source token buckets. Circuit
breakers open on recent error rate spikes and cool down
automatically.

IV. EXPERIMENTAL SETUP

We simulate 180s, baseline 5rps naive polls per source.
Adapters: JWST (pu=420ms, R=2/s, p;=0.02, pq=0.03,
TTL=30s); ISS (80ms, 10/s, 0.01, 0.01, 2s); LHC (250 ms,
/s, 0.03, 0.02, 5s); GPS (50ms, 20/s, 0.005, 0.005, 15s). We
inject an outage on LHC for [0.5,0.7] of the run. Metrics are
averaged over 5 runs.

V. RESULTS
Variant Succ Lat(ms) p95(ms) Fresh(s) Retr/lk Viol/lk
naive 0.950 120.00 250.00 0.12 0.000 320.000
retry 0.970 130.00 280.00 0.13 450.000 340.000
cache 0.960 40.00 100.00 2.00 0.000 50.000
attn_rl 0.980 90.00 190.00 0.09 0.000 0.000
attn_full 0.990 25.00 60.00 0.05 120.000 0.000

APPENDIX: SCHEMA REGISTRY EFFECT
VI. DISCUSSION

Attention-weighted budget allocation respects rate limits
while steering toward low-latency, reliable sources. Caches and

https://orcid.org/0009-0006-2298-6538

Mean Latency

Latency (ms)

& Ry} & ,\\ﬁ\ S
& @ & & 0691
Fig. 2: Mean latency (ms): naive=0.000, retry=0.000,

cache=0.000, attn_rl=0.000, attn_full=0.000.

p95 Latency

250

200

150

Latency (ms)

S S <& N @\\
& @ & ,;)L@ ’ @(@/
Fig. 3: p95 latency (ms): naive=0.000, retry=0.000,

cache=0.000, attn_rl=0.000, attn_full=0.000.

hedging cut both average and tail latencies while improving
freshness. Circuit breakers prevent flapping against failing
backends. Schema normalization trims drift-induced failures
without masking genuine changes; TTL provides controlled
staleness.

VII. CONCLUSION

A plug-in adapter interface backed by attention-weighted
dispatch and classic resilience primitives yields robust cross-
domain integrations. The system maintains high success and
freshness while reducing tail latency and outage sensitivity
across heterogeneous scientific APIs.

Freshness

N
&) &

&
<8
° &

%,

Fig. 4: Freshness (s, lower is better): naive=0.000, retry=0.000,
cache=0.000, attn_rl=0.000, attn_full=0.000.

Overheads Chart

Fig. 5: Overheads per 1k items: retries=0.000, viola-
tions=0.000 (naive worst), schema errors=0.000 vs 0.000.

Outage Impact

Throughput Drop (%)
N WA U O N o®
o © & 5 & & & o

P N

o
'

> N
5 & < 3 S
S

2
&
R

Fig. 6: Outage impact: throughput drop (%) during LHC
outage: naive=0.000, retry=0.000, cache=0.000, attn_rl=0.000,
attn_full=0.000. Lower is better.

Schema Registry Effect

09 0.018

08 0.016
L) I
507 0.014 5
g <
z 06 0.012 £
(&) w
gos 0.010 £
Bo4 2
go. 0.008 3

03 0.006

02 0.004

0 25 50 75 100 125 150 175
Time (s)

Fig. 7: Schema registry adoption improves mapping coverage
(solid) while reducing schema error rate (dashed). Final cov-
erage=0.936, final error rate=0.003.

	Introduction
	Related Work
	Methods
	Adapters
	Variants
	Attention Score

	Experimental Setup
	Results
	Discussion
	Conclusion

