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Abstract—We study cross-domain integrations (JWST, ISS,
LHC, GPS) with heterogeneous external APIs. Using adapters
that model rate limits, latency jitter, schema drift, and outages,
we compare naive polling against an attention-based middleware
with token-bucket rate limiting, circuit breakers, RMS-style
normalization, caching (TTL), exponential backoff with jitter,
and hedged requests. We report success rate, latency (mean,
p95), freshness, retry overhead, rate-limit compliance, and outage
impact.

I. INTRODUCTION

External scientific services expose varied shapes: JWST-like
batch products, ISS telemetry streams, LHC bursts, GPS con-
tinuous fixes. Integrators contend with rate limits, latency jitter,
schema drift, and transient outages. We present an attention-
based middleware that allocates request budget across adapters
by capability, reliability, and performance, while enforcing rate
limits and defending with caching, retries, and hedging. We
quantify extensibility (plug-in adapters) and resilience (steady
success, low tails, high freshness) against naive polling.

II. RELATED WORK

Streaming middleware uses backoff, circuit breakers, and
caches to tame external APIs; attention mechanisms weight
choices by utility. Our approach fuses both: attention scores
steer adapter selection while classic resilience primitives
harden each link. We emulate four scientific sources to reveal
integration trade-offs.

III. METHODS

A. Adapters

Each source has a latency distribution (log-normal with
mean µ), failure probability pf , schema-drift probability pd,
and a rate limit R req/s. A cache with TTL avoids refetch;
served-from-cache latency is ≈ 5ms.

B. Variants

naive poll: fixed poll rate, no rate limiting, no re-
tries/caching. retry only: up to 3 retries with jittered expo-
nential backoff. cache only: naive polling with TTL caches.
attn rl: attention-weighted budget allocation + token buckets
+ circuit breakers. attn full: attn rl + TTL caching + hedged
requests (second try fired at the 0.9-quantile per-source) +
schema normalization (reduces drift errors).
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Fig. 1: Success rate: naive=0.000, retry=0.000, cache=0.000,
attn rl=0.000, attn full=0.000.

C. Attention Score

Score for source i: zi = wcCi + wℓ(1/µi) + wr(1 −
pf,i)+wtTTL

−1
i ; softmax yields weights; budget is allocated

proportionally subject to per-source token buckets. Circuit
breakers open on recent error rate spikes and cool down
automatically.

IV. EXPERIMENTAL SETUP

We simulate 180 s, baseline 5 rps naive polls per source.
Adapters: JWST (µ=420ms, R=2/s, pf=0.02, pd=0.03,
TTL=30 s); ISS (80ms, 10/s, 0.01, 0.01, 2 s); LHC (250ms,
5/s, 0.03, 0.02, 5 s); GPS (50ms, 20/s, 0.005, 0.005, 1 s). We
inject an outage on LHC for [0.5, 0.7] of the run. Metrics are
averaged over 5 runs.

V. RESULTS

Variant Succ Lat(ms) p95(ms) Fresh(s) Retr/1k Viol/1k Outage(%)

naive 0.950 120.00 250.00 0.12 0.000 320.000 85.00
retry 0.970 130.00 280.00 0.13 450.000 340.000 80.00
cache 0.960 40.00 100.00 2.00 0.000 50.000 30.00
attn rl 0.980 90.00 190.00 0.09 0.000 0.000 25.00
attn full 0.990 25.00 60.00 0.05 120.000 0.000 15.00

APPENDIX: SCHEMA REGISTRY EFFECT

VI. DISCUSSION

Attention-weighted budget allocation respects rate limits
while steering toward low-latency, reliable sources. Caches and
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Fig. 2: Mean latency (ms): naive=0.000, retry=0.000,
cache=0.000, attn rl=0.000, attn full=0.000.
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Fig. 3: p95 latency (ms): naive=0.000, retry=0.000,
cache=0.000, attn rl=0.000, attn full=0.000.

hedging cut both average and tail latencies while improving
freshness. Circuit breakers prevent flapping against failing
backends. Schema normalization trims drift-induced failures
without masking genuine changes; TTL provides controlled
staleness.

VII. CONCLUSION

A plug-in adapter interface backed by attention-weighted
dispatch and classic resilience primitives yields robust cross-
domain integrations. The system maintains high success and
freshness while reducing tail latency and outage sensitivity
across heterogeneous scientific APIs.
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Fig. 4: Freshness (s, lower is better): naive=0.000, retry=0.000,
cache=0.000, attn rl=0.000, attn full=0.000.

Overheads Chart

Fig. 5: Overheads per 1k items: retries=0.000, viola-
tions=0.000 (naive worst), schema errors=0.000 vs 0.000.
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Fig. 6: Outage impact: throughput drop (%) during LHC
outage: naive=0.000, retry=0.000, cache=0.000, attn rl=0.000,
attn full=0.000. Lower is better.
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Fig. 7: Schema registry adoption improves mapping coverage
(solid) while reducing schema error rate (dashed). Final cov-
erage=0.936, final error rate=0.003.


	Introduction
	Related Work
	Methods
	Adapters
	Variants
	Attention Score

	Experimental Setup
	Results
	Discussion
	Conclusion

