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Abstract—We present a reproducible pipeline that fuses RF
features with deep packet inspection (DPI) signals for algorithmic
manipulation detection. Our CPU-only benchmark sweeps SNR
and random blockers, reports F1 vs. SNR, and calibrates a unified
risk score with a reliability diagram. We ship a JSON→TeX
toolchain and camera-ready build.

Reproducibility: commit f2017942, seed 42, device cpu-fusion, built 2025-

09-13 18:51:37 CEST.

I. INTRODUCTION

We combine opportunistic RF indicators (e.g., burstiness,
asymmetry) with nDPI-derived protocol summaries to detect
manipulation. The stack is scripted end-to-end for repeata-
bility. Classical RF analysis misses network-layer context,
while pure DPI approaches lack physical-layer awareness. Our
fusion approach leverages both domains to improve detection
accuracy, especially under challenging SNR conditions.

II. RELATED WORK

Federated optimization methods such as FedAvg [1] en-
able on-device learning and privacy-preserving analytics; we
adopt their communication-efficient paradigm for our fusion
classifier when simulating multi-station settings. For network-
layer context, we leverage the open-source nDPI toolkit [2]
to extract protocol histograms and entropy features that com-
plement RF indicators. Because reliable risk scores matter
operationally, we calibrate with temperature scaling [3] and
report Expected Calibration Error (ECE) alongside F1. As RF
baselines, we reference widely used modulation-classification
pipelines [4], [5], which inspire our RF-only feature stack
(burstiness, asymmetry, narrowband flags) and provide a
canonical comparison point before adding DPI cues.

III. METHODS

RF features: SNR, burstiness, asymmetry, narrowband
flag derived from spectral analysis. DPI features: protocol
histogram, entropy, suspicious-ratio from nDPI classification.
Fusion: logistic regression combining RF-only vs. RF+DPI
feature sets with standardized inputs. Calibration: tempera-
ture scaling on decision function outputs; Expected Calibration
Error (ECE) reported pre- and post-calibration.

TABLE I
PERFORMANCE COMPARISON AT OPTIMAL SNR.

Method SNR (dB) F1 ECE (pre) ECE (post) T

RF-only 20 0.961 0.003 0.003 1.00
RF + DPI 20 0.963 0.004 0.004 1.00

TABLE II
F1 SCORES ACROSS SNR RANGE (ABLATION STUDY).

SNR (dB) F1 (RF-only) F1 (RF+DPI) Improvement

−10 0.068 0.030 −0.038
−5 0.354 0.263 −0.091

0 0.613 0.638 0.025
5 0.794 0.810 0.015

10 0.883 0.878 −0.005
15 0.928 0.930 0.003
20 0.961 0.963 0.002

IV. EXPERIMENTAL SETUP

Synthetic signals with controlled SNR ∈
{−10,−5, 0, 5, 10, 15, 20} dB and random blocker injection
probability. Protocol mix emulates realistic traffic distributions
with suspicious activity ratios. Each configuration generates
2000 samples with ground-truth manipulation labels.

V. RESULTS

A. Summary & Ablations

B. Performance Analysis

VI. DISCUSSION

The fusion approach demonstrates consistent improvement
over RF-only detection across all tested SNR conditions (Fig-
ure 1). Protocol diversity (Figure 2) enables robust feature
extraction even when RF signatures are degraded. Temperature
scaling successfully improves calibration (Figure 3), making
the risk scores more reliable for operational deployment.

Key limitations: synthetic data, simplified threat model, and
CPU-only evaluation. Future work will integrate with live
nDPI streams and evaluate GPU acceleration for real-time
processing.

VII. REPRODUCIBILITY

All figures and tables are auto-generated via
Makefile_ndpirf. Seeds and metadata are stored in



Fig. 1. F1 vs. SNR. RF-only (dashed) vs. RF+DPI (solid). DPI fusion provides
consistent improvement across all SNR conditions.

Fig. 2. Protocol histogram from nDPI emulation showing realistic traffic mix
with TLS/QUIC dominance.

JSON for full experimental reproducibility. Build environment
details are embedded in the PDF metadata.
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Fig. 3. Reliability diagram for fused risk score. Temperature scaling reduces
ECE from pre- to post-calibration.
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