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Abstract—We present a reproducible pipeline that fuses RF
features with deep packet inspection (DPI) signals for algorithmic
manipulation detection. Our CPU-only benchmark sweeps SNR
and random blockers, reports F1 vs. SNR, and calibrates a unified
risk score with a reliability diagram. We ship a JSON—TeX
toolchain and camera-ready build.

Reproducibility: commit f2017942, seed 42, device cpu-fusion, built 2025-
09-13 18:51:37 CEST.

I. INTRODUCTION

We combine opportunistic RF indicators (e.g., burstiness,
asymmetry) with nDPI-derived protocol summaries to detect
manipulation. The stack is scripted end-to-end for repeata-
bility. Classical RF analysis misses network-layer context,
while pure DPI approaches lack physical-layer awareness. Our
fusion approach leverages both domains to improve detection
accuracy, especially under challenging SNR conditions.

II. RELATED WORK

Federated optimization methods such as FedAvg [1] en-
able on-device learning and privacy-preserving analytics; we
adopt their communication-efficient paradigm for our fusion
classifier when simulating multi-station settings. For network-
layer context, we leverage the open-source nDPI toolkit [2]
to extract protocol histograms and entropy features that com-
plement RF indicators. Because reliable risk scores matter
operationally, we calibrate with temperature scaling [3] and
report Expected Calibration Error (ECE) alongside F1. As RF
baselines, we reference widely used modulation-classification
pipelines [4], [S)], which inspire our RF-only feature stack
(burstiness, asymmetry, narrowband flags) and provide a
canonical comparison point before adding DPI cues.

III. METHODS

RF features: SNR, burstiness, asymmetry, narrowband
flag derived from spectral analysis. DPI features: protocol
histogram, entropy, suspicious-ratio from nDPI classification.
Fusion: logistic regression combining RF-only vs. RF+DPI
feature sets with standardized inputs. Calibration: tempera-
ture scaling on decision function outputs; Expected Calibration
Error (ECE) reported pre- and post-calibration.

TABLE I
PERFORMANCE COMPARISON AT OPTIMAL SNR.

Method SNR (dB) Fl  ECE (pre) ECE (post) T
RF-only 20 0.961 0.003 0.003 1.00
RF + DPI 20 0.963 0.004 0.004 1.00
TABLE II
F1 SCORES ACROSS SNR RANGE (ABLATION STUDY).
SNR (dB) F1 (RF-only) FI1 (RF+DPI) Improvement
-10 0.068 0.030 -0.038
-5 0.354 0.263 -0.091
0 0.613 0.638 0.025
5 0.794 0.810 0.015
10 0.883 0.878 —-0.005
15 0.928 0.930 0.003
20 0.961 0.963 0.002
IV. EXPERIMENTAL SETUP
Synthetic signals with controlled SNR €

{-10,-5,0,5,10,15,20} dB and random blocker injection
probability. Protocol mix emulates realistic traffic distributions
with suspicious activity ratios. Each configuration generates
2000 samples with ground-truth manipulation labels.

V. RESULTS
A. Summary & Ablations
B. Performance Analysis
VI. DISCUSSION

The fusion approach demonstrates consistent improvement
over RF-only detection across all tested SNR conditions (Fig-
ure [I). Protocol diversity (Figure enables robust feature
extraction even when RF signatures are degraded. Temperature
scaling successfully improves calibration (Figure [3), making
the risk scores more reliable for operational deployment.

Key limitations: synthetic data, simplified threat model, and
CPU-only evaluation. Future work will integrate with live
nDPI streams and evaluate GPU acceleration for real-time
processing.

VII. REPRODUCIBILITY

All figures and tables are auto-generated via
Makefile_ndpirf. Seeds and metadata are stored in
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Fig. 1. F1 vs. SNR. RF-only (dashed) vs. RF+DPI (solid). DPI fusion provides
consistent improvement across all SNR conditions.
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Fig. 2. Protocol histogram from nDPI emulation showing realistic traffic mix Confidence
with TLS/QUIC dominance.

Fig. 3. Reliability diagram for fused risk score. Temperature scaling reduces

JSON for full experimental reproducibility. Build environment ECE from pre- to post-calibration.

details are embedded in the PDF metadata.
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