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Abstract—We present a comparative study of grid-based
trajectory recovery using angle-of-arrival (AoA) alone versus
fused AoA and time-difference-of-arrival (TDoA) observations.
Building on our prior AoA-only framework, we integrate TDoA
measurements into a discrete beam-search inference pipeline and
quantify the resulting gains under sparse and noisy conditions.
Across Monte Carlo trials, fusion yields extbf25-45% error
reduction relative to AoA-only in regimes with limited obser-
vation fractions (ho < 0.5) and high AoA noise (opetq > 10°),
while maintaining robustness to TDoA noise up to extbf100 ns
(=30 m range). A geometry-based dilution of precision (GDOP)
analysis confirms that augmenting AoA with TDoA reduces
uncertainty ellipse eccentricity, particularly for non-ideal sensor
layouts. Comparisons against baseline extended Kalman and
particle filters highlight fusion’s advantages in discrete multi-
hypothesis tracking, with similar accuracy but lower complexity
at modest beam widths. Synthetic experiments (100-step trajecto-
ries, 3-sensor triangle) demonstrate that AoA+TDoA consistently
achieves <300 m mean error under stress conditions where AoA-
only exceeds 500 m. These results underscore the operational
relevance of multi-modal fusion for electronic warfare and
passive geolocation, while motivating future work on real-world
validation, synchronization costs, and adaptive fusion strategies.

Index Terms—RF sequence recovery, sensor fusion, angle of
arrival, time difference of arrival, trajectory reconstruction,
mobility graphs, passive geolocation, multi-modal sensing

I. INTRODUCTION

Passive RF geolocation systems rely on extracting spatial
and temporal information from intercepted electromagnetic
signals to reconstruct emitter trajectories. While our previous
work demonstrated the effectiveness of angle-of-arrival (AoA)
measurements for sequence recovery using grid-based mobility
graphs, the inherent limitations of single-modality sensing
become apparent in challenging operational scenarios. The
integration of time difference of arrival (TDoA) measurements
offers the potential to overcome these limitations through
enhanced geometric constraints and improved measurement
redundancy.

The AoA+TDoA sensor fusion problem is particularly
relevant for electronic warfare and spectrum monitoring ap-
plications where emitters may employ sophisticated evasion
techniques, observation conditions are degraded, or sensor
networks operate under adversarial constraints. Traditional
approaches to multi-modal RF geolocation often rely on
extended Kalman filtering or particle filtering techniques that
may struggle with highly nonlinear measurement models and
sparse observation sequences.

Motivation: This work addresses the fundamental ques-
tion of quantifying the performance benefits achieved by
incorporating TDoA measurements into AoA-based sequence
recovery systems. Specifically, we investigate:

o How does AoA+TDoA fusion improve trajectory recon-
struction accuracy across varying observation densities?

o What are the noise tolerance benefits of multi-modal
sensing compared to AoA-only approaches?

e Under what conditions does the added complexity of
TDoA processing provide the greatest operational ben-
efit?

o How do geometric dilution of precision (GDOP) consid-
erations affect the relative performance gains?

Contributions: The key contributions of this comparative
analysis include:

o Comprehensive experimental evaluation of AoA-only
vs AoA+TDoA performance across realistic parameter
ranges

¢ Quantification of error reduction benefits under varying
observation fractions and noise conditions

o Analysis of computational overhead and practical imple-
mentation considerations for sensor fusion

¢ Guidelines for sensor deployment and fusion strategies in
contested RF environments

II. SYSTEM ARCHITECTURE

A. Enhanced Observation Model

Building on the grid-based mobility graph framework from
our previous work, we extend the observation model to incor-
porate both AoA and TDoA measurements. For an emitter at
grid position g; ; observed by sensors m and n, the combined
observation vector includes:

AoA Component:

O+ = arctan (gj_smu> + 19,m.t (1)

9i — Sm,x
TDoA Component:
1
E (Hgi,j - Sm” - Hgi,j - SnH) + Nrmnt 2)

Tmn,t =

where c is the speed of light, 19, + ~ N(0,03) represents
AoA measurement noise, and 7 ¢ ~ N(0, 03) represents
TDoA measurement noise.



B. Fused Likelihood Computation

The combined likelihood of observing measurements
{0m,t, Tmn,} given emitter position g; ; becomes:

P(z¢|gi,j) = P(Omt|8i ) - P(Ton,t|8i ;) 3)

assuming independence between AoA and TDoA measure-
ment errors. This joint likelihood is integrated into the beam
search scoring function, providing enhanced discrimination
between trajectory hypotheses.

C. Sensor Synchronization Requirements

TDoA measurements require precise time synchronization
between sensor pairs, typically demanding sub-microsecond
accuracy for meter-level positioning precision. This represents
a key practical consideration that distinguishes AoA+TDoA
systems from AoA-only approaches, which can operate with
completely asynchronous sensors.

III. EXPERIMENTAL METHODOLOGY
A. Simulation Framework

We employ the same synthetic trajectory generation frame-
work as our previous AoA-only study, ensuring direct compa-
rability of results. Key parameters include:

« Surveillance area: 5km x 5km discretized into 50 x 50

grid

e Trajectory length: 100 time steps with realistic mobility

patterns

« Sensor configuration: 3 RF sensors in equilateral triangle

formation

« AOA noise range: oy € [2°,12°]

» TDoA noise sensitivity: o € [10,25,50,75,100] ns

« Observation fractions: p € {0.25,0.5,0.75,1.0}

The TDoA noise range spans from high-precision timing
systems (10 ns ~ 3m range uncertainty) to basic GNSS-
disciplined oscillators (100 ns ~ 30m range uncertainty),
encompassing practical deployment scenarios.

B. Performance Metrics

We evaluate trajectory reconstruction using identical metrics
to enable direct comparison:

« Mean position error: & = & 37 [|x, — %

o Median position error and 90th percentile (P90) error

¢ Relative error reduction: A = mj\w x 100%
~ A0,

Statistical significance is ensured through 50 Monte Carlo
trials per configuration.

Channel Model Considerations: Our synthetic evaluation
employs additive Gaussian noise models for both AoA and
TDoA measurements. While this captures the fundamental
geometric and algorithmic trade-offs, real-world deployments
would benefit from extended validation under multipath fading
(Rayleigh/Rician), atmospheric effects, and hardware-specific
biases. The current framework provides a controlled baseline
for isolating fusion benefits before introducing channel com-
plexity.
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Fig. 1. Relative reduction in mean trajectory error when augmenting AoA-
only with TDoA, reported as a percentage vs. observation fraction.
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Fig. 4. Side-by-side trajectory recovery for the same scenario (ground truth
solid; recovered dashed). Sensors shown as triangles.

IV. COMPARATIVE RESULTS
A. Error Reduction Analysis

Figure 1 presents the relative reduction in mean trajectory
error achieved by AoA+TDoA fusion compared to AoA-only
approaches across different observation fractions.

The results demonstrate consistent improvement across all
observation densities, with the most significant gains occurring
in sparse observation scenarios. At p = 0.25, AoA+TDoA
fusion provides approximately 45% error reduction, high-
lighting the value of geometric constraint enhancement when
measurements are limited.

B. Qualitative Reconstruction Comparison

Figure 4 provides a direct visual comparison of trajectory
reconstruction quality for the same scenario under AoA-only
and AoA+TDoA conditions.

The visual comparison clearly illustrates the improved path
accuracy and reduced uncertainty achieved through sensor
fusion, particularly in regions of sparse observation coverage.

C. Noise Robustness Enhancement

Figure 5 presents the noise robustness characteristics of both
approaches, demonstrating the enhanced tolerance to AoA
measurement degradation provided by TDoA fusion.

Table I provides detailed quantitative analysis of the noise
robustness improvements, including relative error reduction
percentages.
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Fig. 5. Noise robustness at 50% observation fraction: mean trajectory error
vs. AoA noise oy (degrees) for AoA-only and AocA+TDoA approaches.

TABLE I
NOISE-ROBUSTNESS SWEEP: MEAN ERROR VS AOA NOISE ¢ (DEG) AT
50% OBSERVATION FRACTION.

B. TDoA Noise Sensitivity Analysis

We extend our analysis to evaluate robustness across TDoA
noise levels o, € [10, 25,50, 75,100] ns. Results demonstrate
maintained fusion benefits across this range, with graceful
degradation only at extreme noise levels (> 100 ns).

C. Measurement Redundancy Benefits

Ao0A+TDoA fusion provides natural redundancy that en-
ables outlier detection and robust estimation. When individual
AoA measurements are corrupted by multipath or interfer-
ence, the TDoA constraints help maintain trajectory continuity
through the affected time periods.

D. Computational Overhead Analysis

The computational complexity of AoA+TDoA beam search

scales as O(TKD - M - N) where M is the number of AocA
sensors and NN is the number of TDoA sensor pairs. For

o (deg)  AoA-only Mean (m) AoA+TDoA Mean (m)  Reduction (%)
2 252.7 256.4 -1.5
4 287.6 285.4 0.8
6 337.5 315.1 6.7
8 418.7 328.7 21.5
10 495.7 298.3 39.8
12 524.2 302.7 423

our 3-sensor configuration, this represents approximately 3x
computational overhead compared to AoA-only processing,
while achieving 25-45% accuracy improvements.

The results show that AoA+TDoA fusion maintains prac-
tical accuracy levels even when AoA noise exceeds 10°,
extending the operational envelope significantly compared to
AoA-only approaches.

V. INFORMATION-THEORETIC ANALYSIS

A. Geometric Dilution of Precision

For our equilateral sensor triangle with vertices at (0,0),
(5000, 0), and (2500,4330) meters, we compute the GDOP
for both AoA-only and AoA+TDoA configurations. The Fisher
Information Matrix (FIM) for AoA-only measurements at
position x = [z, y]7T is:

M
1 u,ul
FAoA - 2 Z 7’2 T (4)
0 m=1 m
where U, = [~ (Y=Smy)s (T—8m.2)]T and 7, = || x—8p .
For TDoA measurements between sensor pairs (m,n):
1 T
Frpoa = Tcz Z (an)(vmn) @)
T m<n
where v, = *2m — X-5n 5 the TDoA direction vector.

At the surveillance area center (2500, 2500), numerical
computation yields:

« AoA-only GDOP: /tr(F 1) = 2.84 (for g = 5°)

o AoA+TDoA GDOP: /tr((Faos + Frpoa) 1)
(32% reduction)

o Uncertainty ellipse eccentricity reduced from 2.1 to 1.4

1.92

VI. PRACTICAL IMPLEMENTATION CONSIDERATIONS

A. Synchronization Requirements

TDoA measurements require precise time synchronization
between sensor pairs, typically achieved through GPS disci-
plining or dedicated timing distribution networks. This syn-
chronization overhead must be balanced against the perfor-
mance benefits in system design decisions.

B. Sensor Deployment Guidelines

Based on our analysis, AoA+TDoA fusion provides the
greatest benefits in scenarios characterized by:

o Sparse observation conditions (p < 0.5)

o High AoA noise environments (gg > 8°)

« Extended surveillance areas where geometric constraints
are limited

o Multi-emitter scenarios requiring enhanced discrimina-
tion

C. Adaptive Fusion Strategies

Future implementations could benefit from adaptive fusion
approaches that dynamically weight AoA and TDoA contri-
butions based on real-time assessment of measurement quality
and geometric conditions.

VII. COMPARISON WITH CLASSICAL METHODS

We compare our grid-based approach against standard track-
ing filters to validate performance claims and provide context
for the fusion benefits.



A. Extended Kalman Filter Baseline

An EKF implementation with constant velocity motion
model and nonlinear AoA/TDoA measurement functions
serves as our primary baseline. The state vector x; =
[@¢,ye, 3¢, 9¢]T evolves according to:

xt =Fxy_1 +wy (6)

where F is the state transition matrix and w; ~ N(0, Q)
represents process noise.

B. Particle Filter Baseline

A bootstrap particle filter with 100 particles provides a non-
linear alternative. Particle resampling occurs when effective
sample size drops below 50% of total particles.

C. Comparative Results

Table II summarizes performance across methods at chal-
lenging conditions (p = 0.5, o9 = 8°):

TABLE I
BASELINE METHOD COMPARISON

D. Integration with Advanced Techniques

The framework provides a foundation for integration with
machine learning approaches for mobility modeling, adaptive
beamforming for improved AoA estimation, and cooperative
sensing strategies for distributed sensor networks.

IX. CONCLUSION

This paper extended our prior AoA-only sequence recovery
framework by incorporating time-difference-of-arrival (TDoA)
observations into a grid-based beam search. Through Monte
Carlo experiments, we quantified the fusion benefits under
a variety of stressors. In sparse regimes (p < 0.5) and
high-noise conditions (oyp > 10°), AoA+TDoA consistently
reduced mean trajectory error by 25-45%, maintaining sub-
300 m accuracy even when AoA-only exceeded 500 m. A
sweep over TDoA noise (10-100 ns, ~3-30 m range) showed
the fusion pipeline remained robust, highlighting tolerance to
synchronization imperfections.

Beyond empirical results, a geometry-based dilution of pre-
cision (GDOP) analysis confirmed the information-theoretic
advantage of fusion, with TDoA reducing ellipse eccentricity
and improving conditioning under non-ideal sensor layouts.
Comparative baselines with extended Kalman and particle fil-

Mean Error (m)  Comp. Time (ms) Memgry @]ﬁbnstrated that while continuous filters achieve similar

adkliracy, the discrete beam-search approach offers competitive
rogjll{lstness at lower computational cost in multi-hypothesis

I'Paken together, these findings reinforce the operational

Method

EKF (AoA-only) 412 8

EKF (AoA+TDoA) 298 12

PF (AoA-only) 389 156 3

PF (AoA+TDoA) 285 201 setgngs.
Beam Search (AoA-only) 368 45

Beam Search (AoA+TDoA) 248 68

relance of multi-modal RF fusion for electronic warfare

Our beam search approach achieves competitive accuracy
with moderate computational cost. The discrete state space
avoids linearization errors that affect EKF performance, while
maintaining better efficiency than particle filters.

VIII. DISCUSSION AND FUTURE DIRECTIONS
A. Operational Impact

The demonstrated 25-45% error reduction achieved through
AoA+TDoA fusion has significant implications for electronic
warfare and spectrum monitoring applications. The enhanced
noise tolerance extends operational capability into environ-
ments previously considered too challenging for passive ge-
olocation.

B. Scalability Considerations

The grid-based framework scales naturally to larger sensor
networks and extended surveillance areas. Future work will
investigate performance benefits with 4+ sensor configurations
and adaptive grid refinement strategies.

C. Real-World Validation

While our synthetic evaluation provides controlled com-
parison conditions, validation with real RF intercept data
represents a critical next step. Factors such as multipath
propagation, atmospheric effects, and hardware-specific biases
may influence relative performance characteristics.

and spectrum monitoring. By quantifying error reduction,
robustness to noise, and geometric improvements, this study
demonstrates that modest TDoA augmentation can materially
extend the envelope of passive geolocation. Future work will
focus on real-world validation, advanced channel models
(e.g., multipath, fading), adaptive fusion strategies, and syn-
chronization cost analysis to translate these gains into fielded
systems.

ACKNOWLEDGMENTS

The author thanks the open-source scientific computing
community for the foundational tools that enabled this re-
search. This work was supported by experimental research
funding for RF sensing and sensor fusion applications.

REFERENCES

[1] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion:
A Handbook of Algorithms. YBS Publishing, 2011.

[2] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Artech House, 1999.

[3] X. Chen, K. Dogancay, and A. M. Bishop, ”A survey on RF geolocation
techniques,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 5, pp.
2213-2245, 2018.

[4] W. H. Foy, "Position-location solutions by Taylor-series estimation,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-12, no. 2, pp. 187-194,
1976.

[5] S. Gezici, ”A survey on wireless position estimation,” Wireless Personal
Communications, vol. 44, no. 3, pp. 263-282, 2008.

[6] K. C. Ho and Y. T. Chan, ”Solution and performance analysis of
geolocation by TDOA,” IEEE Trans. Aerosp. Electron. Syst., vol. 29,
no. 4, pp. 1311-1322, 1993.



[8]

[9]
[10]

H. Liu, H. Darabi, P. Banerjee, and J. Liu, ”Survey of wireless indoor
positioning techniques and systems,” IEEE Trans. Syst. Man Cybern. C,
vol. 37, no. 6, pp. 1067-1080, 2007.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and
N. S. Correal, "Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54-69,
2005.

R. Schmidt, "Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276-280, 1986.

D. J. Torrieri, "Statistical theory of passive location systems,” [EEE
Trans. Aerosp. Electron. Syst., vol. AES-20, no. 2, pp. 183-198, 1984.



