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Abstract—We study lightweight ensembles that mix deep and
traditional models for RF modulation recognition. We compare
majority vs. confidence-weighted voting, with optional feature
fusion and classical models, and report accuracy, macro-F1,
latency and calibration (ECE) across SNR. Our reproducible
pipeline evaluates seven modulation classes across SNR conditions
from -5 to +15 dB.

I. INTRODUCTION

Ensemble learning combines multiple diverse learners to
improve classification robustness and accuracy beyond single-
model approaches [1]. In RF signal classification, where en-
vironmental conditions and noise significantly impact perfor-
mance, ensemble methods offer particular advantages through
diversity in model architectures and aggregation strategies.

This work evaluates ensemble configurations for automatic
modulation recognition, comparing voting schemes, feature
fusion, and traditional ML integration across varying signal-
to-noise ratio (SNR) conditions, building on established CNN
approaches [2].

II. METHODOLOGY

We implement ensemble configurations combining:

• Voting schemes: Majority voting vs. confidence-
weighted aggregation

• Feature fusion: Spectral and temporal feature combina-
tion

• Traditional ML: Integration of classical models (RF,
SVM) with deep learning

Performance evaluation includes accuracy, macro-F1, la-
tency (ms/sample), and Expected Calibration Error (ECE) to
assess both discriminative power and confidence reliability.

III. EXPERIMENTAL SETUP

We evaluate seven modulation classes: AM, FM, SSB,
CW, PSK, FSK, and NOISE across SNR conditions from -
5 to +15 dB. Synthetic IQ data generation enables controlled,
reproducible experiments with known ground truth.

The complete pipeline follows: bench → JSON → plots
→ TeX → PDF for full reproducibility.

Fig. 1. Pareto frontier of macro-F1 vs. latency (ms/sample). Higher F1 scores
generally require increased computational cost.

Fig. 2. Performance vs. SNR for different voting methods. Weighted voting
consistently outperforms majority voting across SNR conditions.

IV. RESULTS

Figure 1 shows the performance-latency trade-off across en-
semble configurations, while Figure 2 demonstrates robustness
across SNR conditions.

Table I presents the top-performing configurations at SNR =
10 dB, while Table II provides comprehensive ablation results



TABLE I
TOP ENSEMBLE CONFIGURATIONS AT SNR = 10.000dB.

Voting Fusion Trad-ML Lat. (ms) Acc F1 ECE

weighted on on 3.200 0.835 0.835 0.050
weighted on off 2.500 0.726 0.726 0.071
weighted off on 2.300 0.643 0.643 0.052
majority on on 3.200 0.551 0.551 0.090
weighted off off 1.600 0.526 0.525 0.065

TABLE II
ABLATION STUDY ACROSS SNR CONDITIONS AND ENSEMBLE CHOICES.

Voting Fusion Trad-ML SNR Lat. F1 ECE

majority off off −5.000 1.600 0.199 0.025
majority off off 0.000 1.600 0.222 0.032
majority off off 5.000 1.600 0.265 0.017
majority off off 10.000 1.600 0.299 0.034
majority off off 15.000 1.600 0.241 0.094
majority off on −5.000 2.300 0.254 0.014
majority off on 0.000 2.300 0.299 0.126
majority off on 5.000 2.300 0.329 0.099
majority off on 10.000 2.300 0.376 0.109
majority off on 15.000 2.300 0.377 0.094

across SNR levels.

A. Calibration Analysis

Figure 3 demonstrates the importance of confidence cali-
bration in ensemble methods [3]. Post-calibration significantly
reduces ECE while maintaining discriminative performance.

B. Detailed Performance Analysis

Figure 4 shows the normalized confusion matrix for the best
ensemble configuration, revealing class-specific performance
patterns. Most confusion occurs between adjacent modulation
types, consistent with known signal characteristics.

Per-class precision-recall curves (Figure 5) demonstrate
varying classification difficulty across signal types. Some
classes achieve near-perfect performance while others show
characteristic precision-recall trade-offs typical of RF classifi-
cation tasks.

Detailed per-class performance metrics are provided in
Table III, showing average precision scores that complement
the aggregate results in Table I.

V. DISCUSSION

Key findings include:

• Weighted voting consistently outperforms majority vot-
ing across SNR conditions

• Feature fusion provides modest improvements at in-
creased computational cost

• Traditional ML integration offers complementary
strengths, especially at low SNR, following Random
Forest principles [4]

• Calibration is essential for reliable confidence estimates
in ensemble systems [3]

Fig. 3. Reliability diagram with identity line. Post-calibration reduces ECE
from pre-calibration levels, improving confidence reliability.

Fig. 4. Normalized confusion matrix for the best ensemble configuration.
Diagonal elements indicate correct classification rates per class.

The reproducible pipeline enables systematic exploration
of ensemble trade-offs and supports future extensions with
additional model architectures or aggregation strategies.

VI. REPRODUCIBILITY

All results are generated via make -f
Makefile_ensemble camera-ready. The pipeline
includes:

• Deterministic benchmarks: Fixed random seeds ensure
reproducible synthetic data

• Versioned metrics: JSON outputs enable result tracking
and comparison

• Publication automation: Complete LaTeX compilation
from raw benchmarks

• Cross-platform compatibility: Pure Python implemen-
tation with minimal dependencies



TABLE III
PER-CLASS AVERAGE PRECISION (AP) RESULTS

Class AP

AM 0.717
FM 0.645
SSB 0.716
CW 0.672
PSK 0.684
FSK 0.667
NOISE 0.724

Mean AP 0.689
Std AP 0.028

Fig. 5. Per-class precision-recall curves with average precision (AP) scores.
Higher curves indicate better class-specific performance.

VII. CONCLUSION

This reproducible study demonstrates the effectiveness of
ensemble methods for RF signal classification. Weighted vot-
ing with selective feature fusion provides the best accuracy-
latency trade-off, while proper calibration ensures reliable
confidence estimates. The open pipeline supports continued
research in ensemble architectures for RF applications.
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