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Abstract—RF-augmented reality (RF-AR) wearables enable
detection of threats, casualties and anomalies, but they rely on
a set of alert thresholds tailored to mission context and user
physiology. Presently, these thresholds are either hard coded
or tuned manually, limiting adaptability across individuals and
environments. Centralizing raw RF biomarker data to train
adaptive models raises privacy and compliance concerns, as raw
vitals and location may constitute a search under U.S. law [1], [2].
Federated learning offers a solution: devices collaboratively train
a shared model while maintaining data locally [3], [4]. We propose
Federated Adaptation, a framework that tunes alert thresholds on
device using reinforcement signals (e.g., user acknowledgments)
and aggregates updates via a federated server. Our contributions
are:

• We design a personalised threshold adaptation algorithm
that leverages local feedback to adjust detection sensitivity
and uses federated averaging to produce a global base
model.

• We integrate the algorithm with our Glass platform and
evaluate on Jetson and Pixel hardware under variable
mission conditions, measuring false positive/negative rates,
latency and energy.

• We demonstrate that federated adaptation reduces false
critical alerts by 32 % compared to static thresholds
while preserving battery life and complying with privacy
constraints.

• We provide a reproducible benchmark harness with JSON
metrics, standardised traces and one-command figure gen-
eration using OpenBench-AR.

I. INTRODUCTION

Augmented reality platforms for defence, first responders
and industrial safety rely on RF biomarker sensing to detect
hazardous events and casualties. These systems typically em-
ploy fixed thresholds—such as a 12 % change in respiration
rate or an 80 dB increase in RSSI—to trigger alerts. How-
ever, physiological baselines vary across users, environments
and gear; static thresholds lead to false positives or missed
detections. Personalisation is essential, yet sending raw RF
waveforms to a central server for training contravenes privacy
norms and legal precedent. Federated learning provides a
privacy-preserving alternative: multiple devices train a shared
model while keeping raw data on device. The PhoenixNAP
overview notes that federated learning allows devices to train
a shared model while their data remains on a local site,
addressing privacy concerns because no raw data is transferred
and only model updates are shared [5]. Inspired by this

paradigm, we develop a federated adaptation scheme that tunes
thresholds locally and aggregates updates securely.

Our approach sits at the intersection of systems, ML and
policy. We extend the OpenBench-AR suite with personalised
learning, enabling operators to annotate alerts as true or
false; these signals update the local threshold model. Every
T minutes, devices compute gradient updates and send them
to a coordination server, which performs federated averaging
and returns a global model. Devices then blend the global
model with their local state, preserving personalisation. This
design avoids raw data transfer while improving performance
across the fleet.

II. FEDERATED ADAPTATION ALGORITHM

We model the alert threshold as a parameter vector θ that
maps features x (e.g., respiration frequency, RF power) to a
scalar score. An alert is triggered when σ(x;θ) exceeds a
role-dependent threshold τ . Operators provide binary feedback
y ∈ {0, 1} indicating whether the alert was warranted. Each
device updates its local parameters θi via stochastic gradient
descent minimising a logistic loss ℓ(θi) = −[y log σ(x;θi) +
(1 − y) log(1 − σ(x;θi))]. After accumulating K updates,
device i sends the difference ∆θi to the server. The server
computes

θglobal =
1

N

N∑
i=1

(
θ
(t)
i +∆θi

)
, (1)

where N is the number of participating devices. Each device
then updates its local model as

θ
(t+1)
i = (1− λ)θglobal + λ

(
θ
(t)
i +∆θi

)
, (2)

where λ ∈ [0, 1] controls the weight of personalisation. Setting
λ = 0 yields full federated synchronisation, while λ = 1 keeps
purely local adaptation.

To protect privacy, devices exchange only model updates.
Since federated learning does not transmit raw data [4],
our algorithm aligns with legal requirements. We implement
secure aggregation using PySyft to prevent the server from
viewing individual updates.
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TABLE I
LATENCY, COMMUNICATION AND ENERGY OVERHEAD PER DEVICE.

VALUES ARE MEAN OVER ROUNDS WITH 95 % CI. COMMUNICATION
VOLUME EXCLUDES STATIC BASELINE OF BROADCAST ALERTS.

Config Latency (ms) Comm. (KB/min) Energy (mJ/min)

Static 0.0 0.0 0.0
Local only 4.5 0.0 5.2
Federated 6.3 12.4 6.0
Centralised 10.2 38.7 9.8

III. METHODOLOGY

A. Experimental Setup

We evaluate federated adaptation using our Glass client
simulator and the glasscasualty dataset. We simulate 20 de-
vices (10 Jetson Xavier NX and 10 Pixel 8) with varied
user baselines. Each device generates alerts based on its local
threshold model and collects operator feedback (true or false
alert). We compare four configurations:

1) Static: fixed thresholds derived from the prior
RF-QUANTUM-SCYTHE prototype.

2) Local only (λ = 1): purely on-device adaptation without
federated aggregation.

3) Federated (ours, λ = 0.5): devices perform local
updates and periodically average models.

4) Centralised: all raw RF data is uploaded to a server that
trains thresholds centrally (privacy baseline).

We run experiments for 10 rounds of 10 min each, with
30 seconds of training and 9.5 min of evaluation. Jamming and
network degradation experiments simulate 60 % packet loss
to test the resilience of update transmission. Metrics include
false critical alerts (FCR), false dismissals (FD), average alert
latency, communication volume (bytes transmitted) and energy
consumption.

B. Marketing and Application Context

Federated adaptation serves multiple markets: defence
primes seek low-latency SLAs and reduced false alarms;
first responders and industrial safety require battery-efficient
drop-in brokers; spectrum regulators value compliance via au-
dit logs and role-based access; and K9 replacement scenarios
benefit from personalisation across breeds. Our open SDK
supports Glass/Android integration, and the red-team datasets
and benchmarking harness deliver monetisable artifacts for
training and evaluation.

IV. RESULTS

Figure 1 shows the progression of FCR and FD across
training rounds. Local adaptation reduces FCR by 18 % but
increases FD as devices overfit to local noise. The federated
approach strikes a balance, achieving a 32 % reduction in
FCR and a 15 % reduction in FD relative to static thresholds.
Centralised training reduces FCR most but violates privacy and
consumes 3× more bandwidth. Table I summarises latency,
communication and energy.
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Fig. 1. False critical alert rate across training rounds. Federated adaptation
reduces false alerts without centralising raw data.

V. DISCUSSION

A. Personalisation vs. Generalisability

Our results highlight the tension between local personali-
sation and global performance. Purely local updates reduce
false alerts but increase false dismissals due to overfitting.
Centralised training optimises global performance but com-
promises privacy and network efficiency. Federated adaptation
provides a compromise: model updates capture local nuances
while the server aggregates across the fleet. The parameter λ
controls the degree of personalisation, enabling operators to
tune privacy–utility trade-offs.

B. Privacy and Compliance

By keeping raw RF data on device, our approach conforms
to recommendations that federated learning addresses privacy
by preventing raw data transfer [6], [7]. Combined with
role-based redaction (see Section X of the Privacy paper),
federated adaptation supports compliance with data protection
regulations and constitutional protections under Kyllo and
Jones.

C. Limitations and Future Work

Our experiments simulate 20 devices and may not capture
the full diversity of deployments. Larger fleets, dynamic
joining/leaving and unbalanced datasets warrant investigation.
We plan to explore personalised federated algorithms (e.g.,
meta-learning) and secure aggregation techniques such as
differential privacy to further strengthen privacy guarantees.
Additionally, integrating this framework with our red-team
datasets and benchmarking harness will enable evaluation
under adversarial conditions (jamming, spoofing).

VI. CONCLUSION

We presented Federated Adaptation, a privacy-preserving
framework that personalises RF alert thresholds across wear-
able devices without centralising raw data. By combining local
online learning with federated aggregation, we achieved a
32 % reduction in false critical alerts and maintained low
latency and energy overhead. Our design leverages federated
learning’s ability to keep data on the device [8] and aligns with



privacy laws. The open benchmarking harness and datasets
will enable the community to build and evaluate personalised
RF-AR systems with clear privacy guarantees.
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