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Abstract

Accurately characterising the performance of black-box RF demodulation pipelines normally
requires dense sweeps over many parameters, incurring high computational cost[1l]. Gaussian
process (GP) surrogate models provide smooth interpolants and predictive uncertainty, enabling
efficient exploration[l]. This paper investigates how many targeted runs are needed to recon-
struct a smooth performance field and whether the GP uncertainty estimates are well calibrated.
A synthetic two-dimensional performance function serves as the ground truth. We sample N
points uniformly at random, fit a GP to the observations and evaluate the root mean-squared er-
ror (RMSE) and mean predictive uncertainty on a dense grid. Results show that modest sample
sizes (N in the tens) yield low RMSE and that predictive uncertainty decays at a similar rate.
Calibration curves illustrate that the GP standard deviation provides reasonably accurate con-
fidence intervals[2]. These findings support using few-shot GP characterisation for deployment
planning in RF systems.

1 Introduction

Complex RF demodulation pipelines often behave as black boxes, with performance (e.g., true hit
rate, latency or energy consumption) as a function of many continuous parameters. Exhaustive
sweeps over this parameter space are prohibitively expensive[l]. Gaussian processes (GPs) have
emerged as flexible surrogate models that approximate unknown functions and provide uncertainty
estimates[1]. In engineering, GPs facilitate Bayesian optimisation and active learning by quantifying
where the model is uncertain and thus where new experiments are most informative. However,
practitioners must balance the cost of additional runs against the accuracy and calibration of the
resulting GP approximation.

This paper focuses on two questions relevant to deployment planning for black-box RF fitting:
(i) How many targeted runs (V) are needed for a GP to reconstruct a smooth performance field
with acceptable error? (ii) Are the predictive uncertainties well calibrated so that they can be
used to assess risk? To answer these questions, we adopt a synthetic ground truth function on
a two-dimensional parameter space. We randomly sample training points, fit a GP and evaluate
both the reconstruction error and uncertainty metrics. Our calibration analysis follows the principle
that empirical errors should align with predictive distributions; calibration curves test whether the
fraction of points inside predicted confidence intervals matches the nominal probability[2].



2 Methods

2.1 Ground Truth Function

We define a smooth performance field on [0,1]? using a sinusoidal function with additive slope
terms:
f(x) = sin(mzq) cos(mza) + 0.1x1 + 0.0522, (1)

where x = (21, z2) denotes the normalised parameter vector. The function exhibits smooth oscilla-
tions and mild anisotropy, mimicking responses seen in demodulator performance across SNR and
frequency offset. We evaluate f on a grid of 40x40 points to obtain a ground truth image.

2.2 Gaussian Process Model

For each training size N € {5, 10, 20,40, 80} we draw N samples uniformly from [0, 1]2. Observations
are corrupted by additive Gaussian noise with standard deviation 0.01 to emulate measurement
noise. We fit a Gaussian process regressor with a constant—times—RBF covariance plus a white noise
term. Hyperparameters are optimised by maximising the marginal likelihood. Predictions on the
grid produce a posterior mean f and standard deviation o for each point. We compute the RMSE
between f and the true f over the grid and the mean of o. For calibration, we focus on N = 40
and examine whether absolute errors |f(x;) — f(x;)| fall within multiples of the predicted standard
deviation. The nominal coverage for a Gaussian predictive distribution at +mo is erf(m/v/2).

3 Results

3.1 Reconstruction Accuracy and Uncertainty Decay

Figure 1 plots the RMSE and the mean predictive uncertainty versus the number of training
samples. Both metrics decrease rapidly as N increases. With only ten samples, the GP achieves an
RMSE below 0.1. The uncertainty decays at a similar rate, suggesting that sampling more points
not only improves the mean estimate but also shrinks the confidence intervals. Figure 2 isolates
the uncertainty decay, reinforcing the observation that predictive uncertainty roughly halves when
going from five to twenty samples.

3.2 Calibration of Predictive Uncertainty

Calibration assesses whether the predictive distributions reflect the empirical errors. In Figure 3 we
plot a calibration curve for the GP with N = 40. The horizontal axis shows the nominal coverage
probability for intervals +mo and the vertical axis shows the fraction of grid points whose absolute
error is within those intervals. The diagonal line represents perfect calibration. The empirical curve
closely follows the diagonal, indicating that the GP standard deviation is well calibrated for this
problem. Small deviations are visible at high confidence levels, a known phenomenon in GP models

[2].

4 Discussion

The experiments demonstrate that a Gaussian process can reconstruct a smooth performance field
with relatively few samples. RMSE falls below 0.05 with forty samples, and the mean predictive
uncertainty decays at a comparable rate. In practice, this implies that tens of targeted experiments



GP Reconstruction Error and Uncertainty vs Sample Size
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Figure 1: GP reconstruction error (blue) and mean predictive uncertainty (orange) as a function
of the number of training samples. Both metrics decrease rapidly with sample size, indicating that
few targeted runs suffice to capture the global structure of the performance field.

Mean GP Uncertainty vs Sample Size
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Figure 2: Mean GP predictive uncertainty versus sample size. The uncertainty decays sharply
between N =5 and N = 20 and levels off thereafter.



Calibration Curve for GP Predictive Uncertainty (N=40)
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Figure 3: Calibration curve for the GP predictive uncertainty with N = 40. The x-axis shows the
nominal coverage obtained from erf(m/+/2); the y-axis shows the empirical fraction of points whose
errors lie within £mo. The dashed line denotes perfect calibration. The GP uncertainty is well
calibrated overall.

may suffice to build surrogate models for RF demodulation pipelines, enabling rapid what-if analyses
and optimisation. The calibration results show that the GP standard deviation provides reliable
confidence intervals[2], although slight mismatches at high confidence levels suggest that additional
techniques such as local reliability diagrams or recalibration might be useful[2].

We note that the true function in this study is smooth and low frequency. Real RF pipelines may
exhibit sharper features or discontinuities, particularly near failure rims. In such cases, active learn-
ing strategies that target regions of high uncertainty may be necessary. GPs also scale cubically with
the number of samples; sparse or approximate GPs can address this issue for higher-dimensional
problems. Finally, calibration should be assessed for each new problem, as GP uncertainties may
be over- or under-confident depending on model assumptions and noise levels[2].

5 Conclusion

We presented a few-shot characterisation study using Gaussian processes for black-box RF fitting.
By fitting GPs to random samples from a synthetic performance field, we showed that tens of runs
yield low reconstruction error and well-calibrated uncertainties. The GP uncertainty decays rapidly
with sample size, and calibration curves reveal that the predicted confidence intervals are generally
accurate. These results encourage practitioners to adopt GP surrogates for deployment planning
and to use calibration diagnostics to assess predictive reliability.
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