Grouped Query Attention for Subscriber Routing in
Message-Oriented Middleware

Benjamin J. Gilbert

Spectrcyde RF Quantum SCYTHE, College of the Mainland
bgilbert2@com.edu
ORCID: https://orcid.org/0009-0006-2298-6538

Abstract—We study GroupedSubscriberManager (GQA-
inspired): subscribers are grouped, per-topic group sets are
KV-cached, groups are ordered by measured performance (faster
first), and subscribers are ordered by priority (within group).
We quantify cache-hit ratios, group prioritization accuracy,
and end-to-end throughput under synthetic workloads. Our
approach achieves cache-hit ratios up to 90% while maintaining
priority semantics and adapting group ordering based on
real-time performance feedback.

Index Terms—Message-oriented middleware, grouped query
attention, subscriber routing, performance optimization, caching

I. INTRODUCTION

Message-oriented middleware (MOM) systems face the
challenge of efficiently routing messages to multiple sub-
scribers while respecting priority constraints and maintaining
high throughput. Traditional approaches rely on simple pri-
ority queues or round-robin scheduling, which can lead to
suboptimal performance when subscriber characteristics vary
significantly.

We adapt Grouped Query Attention (GQA) concepts [?] to
message-oriented middleware: group subscribers by character-
istics, order groups by measured performance, and cache group
layouts per topic for fast routing. Our target is lower decision
overhead and better locality across hot topics. We report (i)
cache-hit ratio, (ii) correctness of group prioritization, and (iii)

throughput.
Our implementation uses
GroupedSubscriberManager: per-topic KV cache,

group-wise average execution time for ordering, and cache
invalidation on metric updates. Subscribers within a group are
served by priority. This logic is exercised by the network’s
grouped delivery path, inspired by FlashAttention’s [?]
[O-aware attention mechanisms.

The key insight is that just as GQA reduces attention
computation by grouping query heads, we can reduce routing
overhead by grouping subscribers and caching the routing
decisions. Performance feedback ensures that faster groups are
prioritized, while maintaining strict priority ordering within
groups.

Contributions:

¢ A GQA-inspired subscriber management system with KV
caching of per-topic group layouts

o Performance-based group ordering with real-time feed-
back loops

o Comprehensive evaluation of cache effectiveness, group
ordering accuracy, and throughput

¢ Open-source implementation and reproducible bench-
marking framework

II. RELATED WORK

Attention Mechanisms and Efficiency. Attention mecha-
nisms and their IO-aware variants (e.g., FlashAttention [?])
inform locality-aware scheduling by demonstrating how com-
putational patterns can be optimized through careful memory
access patterns. GQA [?] motivates coarse-grained grouping
to reduce compute overhead while maintaining quality, a
principle we adapt to subscriber routing.

Message-Oriented Middleware. In middleware systems,
priority queues and caches are standard for managing sub-
scriber routing [?]. However, most systems treat each routing
decision independently, missing opportunities for locality and
reuse. Modern event-driven architectures like those built on
asyncio [?] benefit from efficient subscriber management but
lack group-aware optimization.

Performance-Aware Scheduling. Traditional scheduling
systems use static priorities or simple round-robin approaches.
Our novelty is combining per-topic KV caching with dynamic
group ordering based on online performance feedback, then
integrating it into grouped delivery. This creates a feedback
loop where routing decisions improve over time based on
actual subscriber performance.

Caching in Distributed Systems. While caching is widely
used in distributed systems, our approach of caching computed
routing decisions (group layouts) rather than data is less
common. The invalidation strategy based on performance up-
dates ensures that cached decisions remain optimal as system
conditions change.

III. METHODS

A. GroupedSubscriberManager Architecture

For each ropic, we maintain the set of groups subscribed.
On a query, subscribers are collected per group and sorted
by priority (descending). Each group is scored by average
execution time (mean of per-subscriber average), and groups

https://orcid.org/0009-0006-2298-6538

are ordered faster-first. The result is KV-cached by topic and
invalidated when performance is updated.
The core data structures are:
e subscribers: Maps topic — group — [(callback,
priority)]
e performance_metrics: Maps (topic, group) —
{total_time, call_count}
e group_cache: Maps topic — computed group layout

B. Performance Feedback Loop

After each callback execution, we call
update_performance_metrics (topic, group,
callback, execution_time), which updates the
cumulative statistics:

total_time, , < total_time, ; + At (1)

call_count; 4 < call_count; , + 1)
. total_time

avg_time, , = —— g 3)

call_count; 4

This update invalidates the topic cache to re-sort groups on
the next dispatch, ensuring that group ordering reflects current
performance characteristics.

C. Group Ordering Algorithm

Groups are ordered by ascending average execution time:
order(Gy) = argsort ¢, (avg_time; ;) 4)

where G is the set of groups subscribed to topic ¢. Within
each group, subscribers are ordered by descending priority:

order(Sy,4) = argsort, g, (priority,, desc) Q)

D. KV Cache Management

The cache stores computed group layouts to avoid repeated
sorting operations:

o Cache hit: Topic exists in cache, return cached layout

o Cache miss: Compute layout, store in cache, return result

« Invalidation: Remove entry on subscribe/unsubscribe or
performance update

This approach balances computational efficiency with fresh-
ness of routing decisions.

E. Grouped Delivery Path

The network delivery routine follows this algorithm:

1) Fetch grouped subscribers for message’s topic (triggers
cache lookup)
2) Sort groups by average execution time (faster first)
3) For each group in order:
a) Sort subscribers by priority (higher first)
b) Execute callbacks and measure execution time
¢) Update performance metrics for the group
This ensures that faster groups are processed first while
maintaining priority semantics within each group.

F. Baseline: Flat Priority Router

We include a flat priority router that ignores groups and
routes by global subscriber priority only. It uses the same
subscribers and base service times as GQA but performs no
per-topic caching or performance-based reordering. This base-
line demonstrates the value of both grouping and caching by
computing a global priority sort on each lookup, maintaining
compatibility with the benchmark interface while serving as a
control condition.

IV. EXPERIMENTAL SETUP
A. Synthetic Workload Design

We synthesize three groups (A_fast, B_mid, C_slow) with
distinct base service times and priority mixes to create a
realistic heterogeneous subscriber environment. Each group
has different performance characteristics:

o A_fast: Base service time 0.20ms, priorities [3,2]

« B_mid: Base service time 0.35ms, priorities [3,1]

o C_slow: Base service time 0.60ms, priorities [4,2]

We generate 20 000 messages across two experimental con-
figurations:

o gqa_cache_off: Clear KV cache on every lookup (worst

case)

o gqa_cache_on: Normal caching behavior (best case)

Each configuration is run for 5 trials with different random
seeds to ensure statistical significance.

B. Execution Model
Callback execution times are modeled using log-normal
distribution to simulate real-world variability:

tezee ~ LogNormal(p = tpese, 0 = 0.15 - thase) (6)

where tp,5¢ 18 the group’s base service time. This captures
both the expected performance differences between groups and
realistic execution time variance.

C. Evaluation Metrics

We measure three key performance indicators:
(1) Cache-Hit Ratio:
CHR — cache hiFs 7
total queries
This measures the effectiveness of our KV caching strategy.
(2) Group Ordering Error:
inversions vs. oracle

GOE = — . ®)
max possible inversions

This measures how well our performance-based ordering
matches the true optimal order (normalized to [0,1]).
(3) Throughput:
messages processed
total simulated execution time

Throughput = 9)

This measures end-to-end system performance in messages per
second.

KV Cache Effectiveness

1.0 0.920
g 08f
3
5]
-4
= L
& 0.6
)
<=
8 04+F
8§ 0.
0.2F
0.050
0.0 0'0,00
: flat gga gqa
priority cache cache
off on

Fig. 1: Cache-hit ratio: flat=0.000 000, off=0.0500, on=0.920.
The dramatic improvement demonstrates the effectiveness of
KV caching for repeated topic queries.

Group Ordering Accuracy (Lower is Better)

0.8 0.650

Group Ordering Error

flat gqa gqa

cache cache
off on

priority

Fig. 2: Group ordering error (lower is better): flat=0.650,
off=0.450, on=0.120. Lower values indicate better alignment
with optimal group ordering based on true performance.

D. Implementation Details

Our benchmark harness is implemented in Python 3 and di-
rectly integrates with the GroupedSubscriberManager
implementation. The simulator tracks cache hits/misses, com-
putes oracle group ordering based on true base service times,
and accumulates execution times for throughput calculation.

All experiments use PYTHONHASHSEED=0 for repro-
ducible random number generation across trials.

V. RESULTS

Our experimental results demonstrate significant perfor-
mance improvements from the GQA-inspired subscriber man-
agement approach compared to both flat priority routing and
non-cached GQA. The KV cache achieves high hit rates when
enabled, dramatically reducing the computational overhead of
group layout computation.

Baseline Comparison: Compared to the flat baseline,
GQA cuts routing decision time from ~12.5 us to ~2.80 us,

System Throughput

2000

1650

-
~
ol
(=}

1500

1250

1000

750

Throughput (messages/second)
w
o
(=)

)
w
(=]

(=]

flat gga gqa
priority cache cache
off on

Fig. 3: Throughput (msgs/s): flat=650, off=850, on=1650.
Higher throughput reflects reduced routing overhead from
effective caching.

Decision Time Comparison

=
[L [
T

Routing Decision Time (ps)
_
o

flat gga gga

cache cache
off on

priority

Fig. 4: Routing decision time (us): flat=12.5, off=8.20,
on=2.80. Lower decision time directly explains throughput
improvements.

while reducing ordering error and raising throughput. The
flat approach ignores groups entirely and performs global
priority sorting on each lookup, explaining its higher decision
overhead.

Cache Effectiveness: Figure ?? shows that enabling the KV
cache increases hit ratios from near zero (when disabled) to
over 90% in typical workloads. This confirms that topic access
patterns exhibit sufficient locality to benefit from caching.

Group Ordering Accuracy: Figure ?? demonstrates that
our performance feedback mechanism successfully learns the
optimal group ordering. The ordering error decreases as the
system accumulates performance statistics, with GQA ap-
proaches significantly outperforming flat priority routing.

Decision Time Impact: Beyond end-to-end throughput,
caching reduces routing decision time from ~8.20us to
~2.80 ps (Figure ??), directly explaining the throughput gains.

Learning Dynamics: Figure ?? shows the group ordering
error rapidly drops within the first few thousand messages,

Learning Dynamics: Ordering Error vs Messages

0.6

0.5F

—e— Flat Priority
Gga Cache Off
—e— Gga Cache On

0.4r

Ordering Error

0.3

02r

\\

1000

0.1

2500 3000 3500 4000 4500 5000

Messages Processed

15‘00 2(;00
Fig. 5: Ordering error over messages processed. Learning
dynamics show rapid convergence for GQA approaches within
the first few thousand messages.

TABLE II: Performance comparison across cache configura-
tions. Values show mean * standard deviation across 5 runs.

priority ordering within each group while only reordering
groups based on performance. This ensures that high-priority
subscribers are always served first within their respective
groups, maintaining the semantic guarantees expected by ap-
plications.

C. Adaptability and Learning

The performance feedback mechanism enables the system
to adapt to changing conditions. As subscriber characteristics
evolve (due to load changes, hardware variations, or software
updates), the group ordering automatically adjusts to maintain
optimal performance. This self-tuning behavior is particularly
valuable in dynamic environments.

D. Limitations and Scope

Our evaluation is limited to synthetic workloads on a single-
node harness. Real-world deployments would face additional
challenges:

o Network effects: Distribution across multiple nodes in-

troduces network latency and partitioning concerns

« Heterogeneous loads: Real applications may have more

complex subscriber behavior patterns

e Memory overhead: KV cache size grows with the num-

Configuration Cache Hit Ratio Ordering Error ~ Throughput (msg/s)

ber of unique topics

flat_priority 0.000 0.650 + 0.090 650 + 80
Cache Disabled 0.050 £ 0.020 0.450 + 0.080 850 £ 95
Cache Enabled 0.920 £ 0.030 0.120 + 0.040 1650 + 120

o Cache invalidation: Frequent performance updates may
limit cache effectiveness

£. Future Work

then stabilizes as performance statistics accumulate. This
validates the effectiveness of our performance feedback mech-
anism.

Statistical Significance: Table ?? presents the complete
results across all metrics. Error bars in the figures represent
standard deviations across 5 independent runs, confirming that
the observed improvements are statistically significant.

The results validate our hypothesis that GQA-style grouping
with performance-based ordering and KV caching can signifi-
cantly improve subscriber routing efficiency while maintaining
priority semantics.

VI. DISCUSSION
A. Key Findings

Our results demonstrate that KV caching raises hit rates and
reduces ordering work, while performance feedback keeps fast
groups prioritized first. The combination of these techniques
provides substantial performance improvements without com-
promising the correctness of priority-based routing.

The dramatic difference in cache hit ratios (near 0% vs.
90%+) highlights the importance of caching in systems with
repeated topic queries. This aligns with the locality principles
underlying FlashAttention and similar IO-aware algorithms.

B. Priority Preservation

Priority within-group ordering is preserved by construction
in our design. The GroupedSubscriberManager maintains strict

Several directions could extend this work:

Learned Group Weights: Instead of simple average-based
ordering, machine learning techniques could predict optimal
group arrangements based on message content, time of day,
or other contextual factors.

Multi-node Scaling: Extending the approach to distributed
systems using consistent hashing rings or other partitioning
strategies. The cache would need to be distributed or replicated
across nodes.

Adaptive Cache Policies: More sophisticated cache man-
agement (LRU, weighted eviction) could improve performance
in environments with large numbers of topics.

Dynamic Group Formation: Automatically discovering
optimal groupings based on subscriber characteristics rather
than relying on manual group assignment.

VII. CONCLUSION

We have presented a novel approach to subscriber routing
in message-oriented middleware inspired by Grouped Query
Attention. Our GroupedSubscriberManager combines
three key innovations: (1) KV caching of per-topic group
layouts, (2) performance-based group ordering with real-time
feedback, and (3) preservation of priority semantics within
groups.

Experimental evaluation demonstrates significant improve-
ments across all measured metrics. Cache hit ratios exceed
90% in typical workloads, group ordering adapts effectively
to performance feedback, and throughput improvements of 50-
100% are achievable through reduced routing overhead.

	Introduction
	Related Work
	Methods
	GroupedSubscriberManager Architecture
	Performance Feedback Loop
	Group Ordering Algorithm
	KV Cache Management
	Grouped Delivery Path
	Baseline: Flat Priority Router

	Experimental Setup
	Synthetic Workload Design
	Execution Model
	Evaluation Metrics

