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Abstract—We propose a hybrid localization framework that
fuses soft angle-of-arrival (AoA) distributions with time-
difference-of-arrival (TDoA) refinements for improved emitter
geolocation. Unlike classical triangulators that threshold AoA
estimates into hard lines-of-bearing, our method leverages full
AoA logits as probabilistic evidence, then applies TDoA-based
refinement to resolve ambiguity and reduce geometric dilution
of precision (GDOP). Monte Carlo simulations show consistent
accuracy gains, with up to 40% RMSE reduction compared to
AoA-only triangulators under noisy conditions. The approach
scales to multi-emitter settings and arbitrary sensor configura-
tions, providing a flexible and computationally efficient fusion
mechanism suitable for radar, GNSS, and passive surveillance
applications.

Index Terms—triangulation, angle-of-arrival, time-difference-
of-arrival, sensor fusion, geolocation, GDOP

I. INTRODUCTION

Accurate emitter geolocation is fundamental to numerous
applications including radar surveillance, electronic warfare,
and navigation systems. Traditional triangulation methods
rely on angle-of-arrival (AoA) measurements from multiple
sensors to intersect lines-of-bearing (LOBs) and estimate
target position [1]. However, these approaches suffer from
geometric dilution of precision (GDOP) in challenging sensor
configurations and discard valuable uncertainty information by
thresholding AoA estimates into hard bearing lines.

Recent advances in machine learning have enabled soft AoA
estimation, where neural networks output probability distribu-
tions over angular bins rather than point estimates [2]. This
soft evidence retains information about estimator confidence
and multipath effects that is lost in traditional hard thresh-
olding. Similarly, time-difference-of-arrival (TDoA) measure-
ments provide complementary range-difference constraints
that can resolve AoA ambiguities and improve localization
accuracy [3].

In this work, we present a hybrid triangulation framework
that optimally fuses soft AoA distributions with TDoA like-
lihoods through probabilistic inference. Our key contributions
are:

1) A probabilistic fusion model that preserves uncertainty
information from soft AoA classifiers while incorporat-
ing TDoA constraints.

2) A beam search refinement algorithm that efficiently
approximates maximum a posteriori (MAP) solutions
while maintaining multimodality.

3) Comprehensive evaluation showing 25-40% RMSE im-
provements over AoA-only methods across diverse noise
conditions and sensor geometries.

4) Extension to multi-emitter scenarios demonstrating im-
proved separation capabilities compared to conventional
approaches.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in AoA/TDoA fusion. Section III
presents the hybrid triangulation methodology. Section IV
describes experimental evaluation and results. Section V con-
cludes with implications for practical geolocation systems.

II. RELATED WORK

Classical triangulation approaches date back to Torrieri’s
seminal work on statistical theory of passive location sys-
tems [1]. These methods typically employ least-squares es-
timation to find the position that minimizes bearing residuals,
but suffer from poor conditioning when sensors are collinear
or when bearing errors are large.

Time-difference-of-arrival (TDoA) methods have been ex-
tensively studied as an alternative to AoA-based triangula-
tion [3], [4]. TDoA measurements define hyperbolic constraint
surfaces in space, and their intersection yields the emitter
position. While TDoA systems require precise time synchro-
nization, they avoid the directional antenna requirements of
AoA systems.

Hybrid AoA/TDoA approaches attempt to combine the
benefits of both modalities. Schmidt [5] proposed weighted
least-squares fusion of AoA and TDoA measurements, while
Weiss [6] developed closed-form solutions for specific sensor
configurations. However, these methods treat AoA estimates
as deterministic values rather than probability distributions.

Recent work has explored soft AoA estimation using neural
networks. Barthelme et al. [2] demonstrated that deep learning
models can output full angular probability distributions, cap-
turing uncertainty and multipath effects. Similarly, Kumar et
al. [7] showed that retaining soft classifier outputs improves
downstream fusion performance.

Our approach differs from prior work by: (1) formulating
fusion as a proper probabilistic inference problem over soft
AoA distributions, (2) incorporating TDoA constraints through
likelihood functions rather than point estimates, and (3) using
beam search to efficiently explore the posterior while preserv-
ing multimodality.



III. METHODOLOGY

We formulate hybrid triangulation as a probabilistic fusion
of soft angle-of-arrival (AoA) evidence and time-difference-
of-arrival (TDoA) likelihoods. The approach proceeds in three
stages: (i) soft AoA inference, (ii) TDoA likelihood modeling,
and (iii) joint fusion with refinement.

A. Soft AoA Evidence

Conventional triangulators threshold AoA estimates into
hard lines-of-bearing (LOBs), discarding information about
estimator uncertainty. Instead, we retain the full distribution
over AoA outputs. For each sensor i, the receiver front-end
produces a logit vector zi ∈ RK over K quantized angular
bins. Applying a softmax yields a probability mass function

p(θ | si) =
exp(zi,θ)∑
θ′ exp(zi,θ′)

,

representing soft evidence of the emitter bearing relative
to sensor i. These distributions are mapped into the global
coordinate frame using the known sensor geometry.

B. TDoA Likelihood

Time-difference-of-arrival measurements provide range-
difference constraints between sensor pairs. For a candidate
emitter position x ∈ R2, the expected TDoA relative to sensor
pair (i, j) is

∆tij(x) =
∥x− si∥ − ∥x− sj∥

c
,

where c is the propagation speed. Observed TDoAs ∆̃tij are
modeled as Gaussian random variables

p(∆̃tij | x) = N
(
∆̃tij ; ∆tij(x), σ

2
τ

)
,

with noise variance σ2
τ reflecting synchronization error and

multipath uncertainty.

C. Fusion Formula

Given candidate position x, the hybrid likelihood is defined
as

p(x) ∝
M∏
i=1

p(θi | si, x) ×
∏

(i,j)∈P

p(∆̃tij | x),

where M is the number of sensors and P is the set of TDoA
sensor pairs. The first product accounts for soft AoA evidence
across sensors, while the second incorporates TDoA likeli-
hoods. This fusion naturally balances angular and temporal
information, reducing geometric dilution of precision (GDOP).

D. Beam Search Refinement

Direct maximization of p(x) over a continuous grid is
computationally intensive. Instead, we employ a beam search
strategy:

1) Initialize a candidate set by sampling from the soft AoA
distributions.

2) At each refinement step, evaluate hybrid likelihood p(x)
for candidates.

Algorithm 1 Hybrid Triangulation with Beam Search
1: Input: Soft AoA logits {zi}, TDoA measurements

{∆̃tij}, beam width K
2: Output: MAP position estimate x̂, uncertainty covariance

Σ
3: Initialize candidate set C0 by sampling from AoA distri-

butions
4: for refinement step r = 1 to Rmax do
5: for each candidate x ∈ Cr−1 do
6: Compute AoA likelihood: ℓAoA(x) =

∏M
i=1 p(θi |

si, x)
7: Compute TDoA likelihood: ℓTDoA(x) =∏

(i,j)∈P p(∆̃tij | x)
8: Set hybrid likelihood: p(x) = ℓAoA(x) · ℓTDoA(x)
9: end for

10: Rank candidates by p(x); retain top-K as Cr
11: Expand each candidate with local perturbations
12: if convergence criterion met then
13: break
14: end if
15: end for
16: Return MAP estimate x̂ = argmaxx∈CR

p(x)
17: Estimate uncertainty Σ from candidate covariance

3) Retain the top-K candidates and expand by local per-
turbations.

4) Iterate until convergence or maximum refinement depth.
This procedure yields efficient approximate MAP (maximum
a posteriori) solutions while preserving multimodality in the
posterior.

E. Computational Complexity

The hybrid scheme incurs only modest overhead relative
to AoA-only triangulation. AoA logits are available at no
additional cost once classifiers are trained, and TDoA likeli-
hood evaluations are O(|P|) per candidate. Beam search with
candidate budget K ensures tractable inference even for large
sensor networks.

IV. EXPERIMENTAL METHODOLOGY

A. Simulation Setup

We evaluate the hybrid triangulation approach using Monte
Carlo simulations with synthetic sensor networks. Experiments
consider three sensor geometries: triangular (3 sensors in
equilateral triangle), square (4 sensors at corners), and linear (4
sensors in a line). Ground truth emitter positions are randomly
distributed across a 10×10 km area of interest.

B. AoA Modeling

Soft AoA distributions are generated by adding Gaussian
noise to true bearings and applying a softmax transformation
over 360 angular bins (1° resolution). The noise variance
σ2
θ ranges from 1° to 10° to simulate different antenna

beamwidths and signal-to-noise ratios.
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Fig. 1. Pipeline for hybrid triangulation. Soft AoA distributions (blue) and
TDoA likelihoods (green) are fused into a posterior over the position grid
(orange), followed by beam-search refinement to produce a MAP estimate
and uncertainty diagnostics.

C. TDoA Modeling

TDoA measurements are synthesized by computing true
range differences and adding Gaussian timing noise with stan-
dard deviation στ ranging from 10 ns to 100 ns, corresponding
to 3-30 m range uncertainty.

D. Baseline Comparisons

We compare against three baseline methods:
• Hard AoA: Classical triangulation using maximum-

likelihood bearing estimates
• Soft AoA: Triangulation using full AoA probability dis-

tributions (no TDoA)
• Hard AoA+TDoA: Weighted least-squares fusion of

point estimates

E. Performance Metrics

Performance is measured using root-mean-square error
(RMSE), negative log-likelihood (NLL) of true positions un-
der estimated posteriors, and geometric dilution of precision
(GDOP) analysis.
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Soft AoA insets: wedge opacity/width ∝ p(θ | si)
TDoA curve: red hyperbola (constant range difference)

Fig. 2. Sensor layout with soft AoA polar insets (blue wedges) and an example
TDoA hyperbola (red) for a fixed range difference between s1 and s2. Insets
convey the full AoA evidence retained by the hybrid fusion; the hyperbola
encodes the TDoA constraint.

F. Results

The hybrid triangulation approach demonstrates consistent
performance improvements across all tested conditions. Fig-
ure 3 shows that hybrid fusion produces significantly tighter
uncertainty ellipses compared to AoA-only methods. Figure 4
illustrates the refinement process, where TDoA constraints
guide convergence from initial AoA estimates to higher-
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Fig. 3. Uncertainty scatter with explanatory insets. Hybrid fusion (red)
produces tighter uncertainty ellipses compared to AoA-only triangulation
(blue). Top-right: soft AoA polar wedge conveys retained bearing uncertainty.
Bottom-left: TDoA hyperbola encodes a constant range-difference constraint
between two sensors.
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Fig. 4. Illustration of refinement process. Trajectories show evolution from
initial AoA-only estimates (blue) to hybrid-fused solutions (red). TDoA
constraints guide convergence to higher-accuracy regions.

accuracy solutions.
Figure 5 presents RMSE performance across varying noise

conditions. The hybrid approach achieves 25-40% accuracy
improvements over AoA-only baselines, with the largest gains
occurring at moderate noise levels where TDoA information
provides maximum discriminative power.

Table I analyzes performance across different sensor con-
figurations. Hybrid fusion provides the largest benefits (41.1%
RMSE reduction) for linear sensor arrays, where traditional
AoA triangulation suffers from poor GDOP. Even for well-
conditioned triangular geometries, hybrid fusion achieves
37.8% improvement.
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Fig. 5. RMSE comparison across noise levels. Hybrid fusion consistently
outperforms baselines, achieving 25-40% accuracy improvements across the
tested range.

TABLE I
ERROR BREAKDOWN ACROSS SENSOR CONFIGURATIONS. HYBRID FUSION

MITIGATES GDOP IN CHALLENGING GEOMETRIES.

Geometry AoA-only RMSE (m) Hybrid RMSE (m) Reduction (%)

Triangle 45.2 28.1 37.8
Square 38.7 25.3 34.6
Linear 89.4 52.7 41.1

Multi-emitter results in Table II demonstrate that the ap-
proach scales effectively to multiple simultaneous emitters.
Success rates remain above 87% even for three-emitter sce-
narios, where AoA-only methods frequently fail to maintain
separation.

Table III confirms robustness across varying noise regimes.
The hybrid approach maintains consistent relative improve-
ments even as absolute error levels increase with noise.

V. CONCLUSION

This work presents a hybrid triangulation framework that
effectively fuses soft AoA distributions with TDoA constraints
for improved emitter geolocation. By preserving uncertainty
information from AoA classifiers and incorporating TDoA
likelihood functions, the approach achieves consistent 25-40%
RMSE improvements over conventional methods.

Key technical contributions include the probabilistic fusion
formulation that naturally balances angular and temporal evi-
dence, and the beam search refinement algorithm that provides
efficient approximate MAP solutions while preserving poste-
rior multimodality.

Experimental validation demonstrates robustness across di-
verse sensor configurations, noise conditions, and multi-
emitter scenarios. The approach is particularly effective for
challenging geometries where traditional AoA triangulation
suffers from poor GDOP.

Future work will focus on real-world validation using
software-defined radio platforms, extension to 3D localization
scenarios, and integration with adaptive beamforming systems
for enhanced AoA estimation accuracy.



TABLE II
MULTI-EMITTER RESULTS. HYBRID METHOD SCALES TO MULTIPLE

EMITTERS WHILE MAINTAINING SEPARATION.

Emitters AoA-only RMSE (m) Hybrid RMSE (m) Success Rate (%)

1 45.2 28.1 98.7
2 67.8 41.5 94.2
3 94.1 58.9 87.3

TABLE III
NOISE SENSITIVITY ANALYSIS. HYBRID FUSION MAINTAINS ROBUSTNESS

ACROSS VARYING ERROR REGIMES.

σθ (°) στ (ns) AoA-only (m) Hybrid (m)

1.0 10 18.3 12.7
2.0 20 28.9 19.4
5.0 50 51.2 32.8
10.0 100 89.7 58.1

The hybrid framework provides a principled foundation for
next-generation geolocation systems that can optimally exploit
multiple measurement modalities while quantifying estimation
uncertainty.
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