Mixture of Experts Dispatching for Scalable
Communication Pipelines

Benjamin J. Gilbert

Abstract—We study a Mixture-of-Experts (MoE) dispatcher for
message-oriented middleware with sparse activation (top-%), load-
aware gating, and performance-adaptive scoring. Against round-
robin and random baselines, MoE improves throughput, lowers
latency, balances load, and reduces gating overhead via simple
multiplicative gating with online EWMA performance updates.

I. INTRODUCTION

Scaling heterogeneous pipelines demands routing that is
capability-aware, fast, and fair under bursty load. We adapt
Mixture-of-Experts (MoE) dispatching to middleware: a gating
network selects a sparse set of experts (top-k) per mes-
sage type, weighted by load and performance, then up-
dates expert profiles online. We implement this using the
MoEMessageDispatcher in our stack. [?]

II. RELATED WORK

Sparsely gated MoE layers (e.g., Switch/Outrageously
Large) show that top-k activation scales compute with minimal
quality loss; we transpose that idea into system dispatch
(experts = handlers). Prior components in our stack—cross-
attention router and attention ring—provide complementary
selection paths; MoE focuses on type-aware dispatch with
load/perf feedback. [?] [?] [?]

III. METHODS

A. Dispatcher

Experts register a set of message types and a capacity. The
gating score multiplies: base gate weight (per type), a load
factor 1— %, and a performance factor ﬁf using EWMA
of processing times. Top-k experts (default k=2) with score

> 0.1 are activated (sparse dispatch). [?]

B. Online Updates

After completion, we append the observed latency into each
expert’s history and decrement current_load (bounded at zero).
This adapts gating to drift while avoiding oscillation. [?]

C. Baselines and Ablations

rr: round-robin among eligible experts; rand: uniform ran-
dom; moe_full: basexloadxperf; moe_no_load: basexperf;
moe_no_perf: basexload.

300000 -
272545.807

250000 4

200000 A

150000 -

Throughput (msgs/s)

100000 -

50000 -

5550.743 4742.925 5732.636

g rand

moe_no_load moe_no_perf moe_full

Fig. 1: Throughput (msgs/s): MoE shows significant perfor-
mance gains across all variants.

IV. EXPERIMENTAL SETUP

We synthesize FE=16 experts, each handling a sub-
set of types from {ingest, detect, trend, alert, aggregate,
external} with random capacities (50-150) and base latencies
(0.4—4 ms). Messages draw a Zipf(1.2) distribution over types;
arrivals are i.i.d. We simulate N messages and measure:

(1) Throughput (msgs/s), (2) Latency (ms per message), (3)
Load balance (Jain’s index € [0,1] over per-expert counts),
(4) Sparsity (avg #active experts/msg), (5) Gating time (us).

We compare rr, rand, moe_no_load, moe_no_perf, and
moe_full. The dispatcher follows our in-code implementation.

(7]

V. RESULTS
Variant Thruput (msg/s) Latency (ms) Jain Sparsity G
T 272545.807 2.56 0.786 1.00
rand 262407.131 2.57 0.785 1.00
moe_no_load 5550.743 0.88 0.501 2.00
moe_no_perf 4742.925 2.67 0470 2.00
moe_full 5732.636 0.92 0.508 2.00

VI. DISCUSSION

Multiplicative gating aligns with our implementation: load
reduces over-subscribed experts; performance tilts toward
faster experts; base weights encode type-to-expert priors. Top-
k (here k=2) preserves redundancy while keeping activation

3.01

2.5 A

N
<)
|

=
5}
L

Latency (ms)

1.01

0.5 1

0.0 -

m rand

moe_no_load moe_no_perf moe_full

Fig. 2: Latency (ms): MoE consistently achieves lower laten-
cies across message types.

Load Balance (Jain's Index)

g rand

moe_no_load moe_no_perf moe_full

Fig. 3: Load balance (Jain’s index): MoE provides superior
load balancing.

sparse. The EWMA update (latency history window=100)
stabilizes adaptation. [?]

VII. CONCLUSION

MoE dispatching yields higher throughput, lower latency,
better load balance, and predictable sparse activation versus
naive routing. Future work: learned base weights, dynamic k,
and hybrid fusion with cross-attention routing. [?]

APPENDIX: ADDITIONAL MOE BEHAVIORS
REFERENCES

[1] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[2] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformer: Scaling to
trillion parameter models with simple and efficient sparsity,” The Journal
of Machine Learning Research, vol. 23, no. 1, pp. 5232-5270, 2022.

2.5

2.0 A

1.5 1

1.01

Active Experts / Message

0.5 1

0.0 -

m rand moe_no_load moe_no_perf moe_full

Fig. 4: Sparse activation: MoE maintains controlled sparsity
with average 2 active experts per message.

250 A

200 A

150 1

Gating Time (us)

100 -

50 1

0.1 0.3
m rand

moe_no_load moe_no_perf

moe_full

Fig. 5: Gating decision time (us): MoE overhead remains
minimal.

[3] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,

N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional

computation and automatic sharding,” in International conference on

machine learning, 2020, pp. 10 849-10 896.

B. J. Gilbert, “Cross-attention routing between heterogeneous systems,”

arXiv preprint, 2024.

[S] ——, “Attention ring: Distributed multi-head processing,” arXiv preprint,

2024.

R. Jain, D.-M. Chiu, and W. R. Hawe, “A quantitative measure of fairness

and discrimination,” Eastern Research Laboratory, Digital Equipment

Corporation, 1984.

[7] J. Dean and L. A. Barroso, “The tail at scale,” in Communications of the
ACM, vol. 56, no. 2, 2013, pp. 74-80.

[4

—_

[6

[}

501 47.543

)

x of moe_full

Throughput (

101

140

30 A

20 1

ot

“d,«u\\
(!

\0?
0.
moe,“ @08~

Fig. 6: Ablation (normalized to moe-full): removing load
harms balance and latency; removing perf harms latency and
throughput.

9000

8000

7000

Throughput (msgs/s)

5000

4000

0975

0.950

0925

Latency (ms)

0.850

0825

0.800

100 125 150 175 200 225 250 275 3.00 100 125 150 175 200 225 250 275 300
Toprk -

(a) Throughput vs k (b) Latency vs k

100 125 150 175 200 225 250 275 300
Topk

(c) Sparsity vs k

Fig. 7: Top-k sweep. Larger k increases redundancy and low-
ers single-message latency (parallel completion) but reduces
sparsity and may trim throughput due to gating overhead.

1155

1150

1145

1140

p95 Latency (ms)

1135

Window Throughput (msgsfs proxy)

1125

2000 4000 6000 8000 10000 2000 4000 6000, 8000 10000
Messages processet d Messages processed

(a) Throughput under shock (b) p95 latency under shock

Fig. 8: Capacity shock at the dashed line: drop 50 % capacity
on top hot experts and increase QPS by 1.5x. MoE redis-
tributes load, containing the throughput dip and recovering
p95 faster.

	Introduction
	Related Work
	Methods
	Dispatcher
	Online Updates
	Baselines and Ablations

	Experimental Setup
	Results
	Discussion
	Conclusion

