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Abstract—We study a Mixture-of-Experts (MoE) dispatcher for
message-oriented middleware with sparse activation (top-k), load-
aware gating, and performance-adaptive scoring. Against round-
robin and random baselines, MoE improves throughput, lowers
latency, balances load, and reduces gating overhead via simple
multiplicative gating with online EWMA performance updates.

I. INTRODUCTION

Scaling heterogeneous pipelines demands routing that is
capability-aware, fast, and fair under bursty load. We adapt
Mixture-of-Experts (MoE) dispatching to middleware: a gating
network selects a sparse set of experts (top-k) per mes-
sage type, weighted by load and performance, then up-
dates expert profiles online. We implement this using the
MoEMessageDispatcher in our stack. [?]

II. RELATED WORK

Sparsely gated MoE layers (e.g., Switch/Outrageously
Large) show that top-k activation scales compute with minimal
quality loss; we transpose that idea into system dispatch
(experts = handlers). Prior components in our stack—cross-
attention router and attention ring—provide complementary
selection paths; MoE focuses on type-aware dispatch with
load/perf feedback. [?] [?] [?]

III. METHODS

A. Dispatcher

Experts register a set of message types and a capacity. The
gating score multiplies: base gate weight (per type), a load
factor 1− current

capacity , and a performance factor 1
1+t̄ using EWMA

of processing times. Top-k experts (default k=2) with score
> 0.1 are activated (sparse dispatch). [?]

B. Online Updates

After completion, we append the observed latency into each
expert’s history and decrement current load (bounded at zero).
This adapts gating to drift while avoiding oscillation. [?]

C. Baselines and Ablations

rr: round-robin among eligible experts; rand: uniform ran-
dom; moe full: base×load×perf; moe no load: base×perf;
moe no perf: base×load.
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Fig. 1: Throughput (msgs/s): MoE shows significant perfor-
mance gains across all variants.

IV. EXPERIMENTAL SETUP

We synthesize E=16 experts, each handling a sub-
set of types from {ingest, detect, trend, alert, aggregate,
external} with random capacities (50–150) and base latencies
(0.4–4 ms). Messages draw a Zipf(1.2) distribution over types;
arrivals are i.i.d. We simulate N messages and measure:

(1) Throughput (msgs/s), (2) Latency (ms per message), (3)
Load balance (Jain’s index ∈ [0, 1] over per-expert counts),
(4) Sparsity (avg #active experts/msg), (5) Gating time (µs).

We compare rr, rand, moe no load, moe no perf, and
moe full. The dispatcher follows our in-code implementation.
[?]

V. RESULTS

Variant Thruput (msg/s) Latency (ms) Jain Sparsity Gate (µs)

rr 272545.807 2.56 0.786 1.00 0.1
rand 262407.131 2.57 0.785 1.00 0.3
moe no load 5550.743 0.88 0.501 2.00 174.3
moe no perf 4742.925 2.67 0.470 2.00 203.6
moe full 5732.636 0.92 0.508 2.00 176.9

VI. DISCUSSION

Multiplicative gating aligns with our implementation: load
reduces over-subscribed experts; performance tilts toward
faster experts; base weights encode type-to-expert priors. Top-
k (here k=2) preserves redundancy while keeping activation
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Fig. 2: Latency (ms): MoE consistently achieves lower laten-
cies across message types.
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Fig. 3: Load balance (Jain’s index): MoE provides superior
load balancing.

sparse. The EWMA update (latency history window=100)
stabilizes adaptation. [?]

VII. CONCLUSION

MoE dispatching yields higher throughput, lower latency,
better load balance, and predictable sparse activation versus
naı̈ve routing. Future work: learned base weights, dynamic k,
and hybrid fusion with cross-attention routing. [?]

APPENDIX: ADDITIONAL MOE BEHAVIORS

REFERENCES

[1] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[2] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformer: Scaling to
trillion parameter models with simple and efficient sparsity,” The Journal
of Machine Learning Research, vol. 23, no. 1, pp. 5232–5270, 2022.

rr rand moe_no_load moe_no_perf moe_full
0.0

0.5

1.0

1.5

2.0

2.5

Ac
tiv

e 
Ex

pe
rts

 / 
M

es
sa

ge

1.00 1.00

2.00 2.00 2.00

Fig. 4: Sparse activation: MoE maintains controlled sparsity
with average 2 active experts per message.
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Fig. 5: Gating decision time (µs): MoE overhead remains
minimal.
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Fig. 6: Ablation (normalized to moe-full): removing load
harms balance and latency; removing perf harms latency and
throughput.
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(c) Sparsity vs k

Fig. 7: Top-k sweep. Larger k increases redundancy and low-
ers single-message latency (parallel completion) but reduces
sparsity and may trim throughput due to gating overhead.
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(a) Throughput under shock
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Fig. 8: Capacity shock at the dashed line: drop 50% capacity
on top hot experts and increase QPS by 1.5×. MoE redis-
tributes load, containing the throughput dip and recovering
p95 faster.
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