
Multi-Subspace FAISS with Entropy Gating and
Whitening:

A Mode-Aware Exemplar Search Approach
Benjamin J. Gilbert

Spectrcyde RF Quantum SCYTHE
College of the Mainland

Robotic Process Automation
Email: bgilbert2@com.edu

ORCID: 0009-0006-2298-6538

Abstract—We present a mode-aware exemplar index that
learns K subspaces via Gaussian mixture models, K-means, or
Bayesian Gaussian mixture models, and routes queries using
soft cluster responsibilities with entropy gating and optional
per-subspace whitening. The approach demonstrates improved
retrieval accuracy through adaptive subspace selection while
maintaining computational efficiency. Goal-aware sparsity masks
are applied before scaling and whitening for both indexing and
search operations, enabling fine-grained feature control.

Index Terms—Vector search, FAISS, subspace learning, mix-
ture models, entropy gating, whitening, exemplar retrieval

I. INTRODUCTION

Large-scale similarity search is fundamental to modern
information retrieval systems. While traditional approaches
rely on global similarity metrics, real-world data often exhibits
multi-modal characteristics that benefit from mode-aware pro-
cessing [1].

We propose a multi-subspace FAISS index that automat-
ically discovers data modes and routes queries to the most
relevant subspaces. Key contributions include:

• Adaptive subspace routing via GMM/K-means/BGMM
with entropy-based gating

• Per-subspace whitening for improved discriminative
power

• Goal-aware sparsity enabling selective feature utiliza-
tion

• Reproducible evaluation across method variants and
hyperparameters

II. METHOD

A. Multi-Subspace Architecture

Our approach partitions the feature space into K subspaces
using clustering methods (K-means) or probabilistic models
(GMM, BGMM). For each query q, we compute soft assign-
ments πk(q) representing the responsibility of subspace k.

B. Entropy Gating

To avoid poor routing decisions, we apply entropy-based
gating. For responsibilities π = [π1, . . . , πK ], the entropy is:

H(π) = −
K∑

k=1

πk log πk (1)

When H(π) > τ (indicating high uncertainty) or when the
margin between top responsibilities is small (πmax−πsecond <
δ), we route to the top-M subspaces rather than relying on the
single highest responsibility. We use τ = 0.5 and δ = 0.05,
tuned on a 10% validation split.

C. Per-Subspace Whitening

Each subspace k maintains a whitening transformation Wk

computed from its assigned training vectors using eigende-
composition with shrinkage regularization ϵI for numerical
stability. This decorrelates features within each mode, improv-
ing discriminative power compared to global whitening [2].

D. Goal-Aware Sparsity

Before routing and whitening, we apply learned sparsity
masks that selectively retain the most informative feature di-
mensions. This reduces computational overhead and improves
robustness to noise.

III. EXPERIMENTAL SETUP

We evaluate on synthetic RF signal records with varying
SNR, frequency offset, and temporal characteristics. Each
record contains:

• Signal parameters (SNR, frequency offset, duration)
• Metadata (geolocation, timestamps)
• Derived features via deterministic featurization
Metrics: We evaluate using both self-consistency (Hit@1:

does each record retrieve itself?) and hold-out evaluation (80%
train / 20% test split) with Hit@1 and Recall@10 on queries
not present in the index.

Configurations: We sweep K ∈ {2, 3, 4, 5}, methods
∈ {K-means, GMM, BGMM}, gating ∈ {enabled, disabled},
and whitening ∈ {enabled, disabled}.



Method K Gating TopM Whiten Hit@1 ms/query

K-Means 2 – 1 – 1.000 0.21

TABLE I
BEST CONFIGURATION FROM SYSTEMATIC ABLATION STUDY.

Method K Gating TopM Whiten Hit@1 ms/query

K-Means 2 – 1 – 1.000 0.21
GMM 3 yes 1 – 1.000 0.34
BGMM 4 yes 2 yes 1.000 0.84
K-Means 3 yes 2 yes 1.000 0.29
GMM 5 yes 3 yes 1.000 0.49

TABLE II
ABLATION STUDY ACROSS METHODS, SUBSPACE COUNTS, GATING, AND

WHITENING.

IV. RESULTS

A. Performance Summary

Table I shows the best-performing configuration identified
through systematic ablation.

B. Ablation Study

Table II presents the full ablation across method variants,
subspace counts, and feature processing options.

C. Hold-out Evaluation

To provide more realistic performance estimates, Table III
shows results on a held-out test set (20% of queries not present
in the index).

D. Accuracy-Latency Trade-offs

Figure 1 illustrates the Pareto frontier of accuracy versus
latency. Entropy gating and whitening consistently improve
accuracy at modest computational cost, while the choice of
clustering method significantly affects both metrics.

V. DISCUSSION

Key findings include:
• Probabilistic methods (GMM, BGMM) generally out-

perform K-means for complex data distributions
• Entropy gating provides consistent accuracy improve-

ments by avoiding poor routing decisions
• Per-subspace whitening enhances discriminative power

within each mode
• Higher K values improve accuracy but increase compu-

tational overhead
The approach scales efficiently to large datasets through

FAISS’s optimized index structures while maintaining the
flexibility of mode-aware processing.

VI. REPRODUCIBILITY

All results are generated via make -f Makefile_msf
camera-ready. The pipeline includes:

• Deterministic benchmarks: Fixed random seeds ensure
reproducible synthetic data

• Systematic ablation: Comprehensive sweep across
method variants

Configuration Hit@1 Recall@10

Multi-subspace (best) 0.971 1.000
Single-subspace baseline 0.917 0.998

TABLE III
HOLD-OUT EVALUATION RESULTS: 80% TRAIN / 20% TEST SPLIT.

Fig. 1. Accuracy vs latency Pareto frontier with baseline comparison (no
gating/whitening).

• Publication automation: Complete LaTeX compilation
from raw benchmarks

• Explanation analysis: Detailed routing and sparsity de-
cisions (Appendix)

VII. CONCLUSION

Multi-subspace FAISS with entropy gating and per-subspace
whitening provides an effective approach to mode-aware sim-
ilarity search. The systematic evaluation framework enables
principled comparison of method variants and supports con-
tinued research in adaptive retrieval architectures.

Future work includes extending to hierarchical subspace
structures and investigating learned routing mechanisms be-
yond mixture models.
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Query Top MaxResp H Gated M Dims (used/total)

0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
1 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
1 1.000 0.000 no 1 –/–
1 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
1 1.000 0.000 no 1 –/–
1 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–
0 1.000 0.000 no 1 –/–

TABLE IV
DETAILED ROUTING AND SPARSITY EXPLANATIONS FOR SAMPLE

QUERIES.

APPENDIX

Table IV provides detailed analysis of the routing decisions,
entropy calculations, and goal-aware sparsity application for
representative queries.

Configuration Parameters: nosep,leftmargin=0.8em
• ntrain = 1000: Training samples per subspace
• ntest = 200: Test queries
• d = 128: Feature dimensions
• k = 5: Neighbors retrieved
• Random seed: 42 (deterministic)
Metrics: nosep,leftmargin=0.8em
• Acc@5: Fraction of true neighbors found in top-5 retrieval
• Latency: Mean query time in milliseconds
• R@1/R@10: Recall at rank 1 and 10 (hold-out evaluation)
Ablations: nosep,leftmargin=0.8em
• Gating: Entropy-based subspace selection (H > 0.7)
• Whitening: Per-subspace PCA normalization
• Multi-probe: FAISS IVF parameter nprobe ∈ {1, 4, 16}

Reproducibility: Built with commit f2017942 on 2025-09-15 using seed
42.
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