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Abstract—We present a compact benchmark for learning RF
beam selection from scene priors and CSI using a lightweight
neural head on top of a simulated environment. The kit auto-
generates figures/tables (accuracy, Succ@+1, ECE/Brier) and
a discrete-beam sweep (8/12/16), ensuring reviewer-safe repro-
ducibility. Our neural approach leverages NeRF scene under-
standing combined with WiFi CSI to predict optimal beamform-
ing angles, with temperature scaling for calibrated uncertainty
estimates.

I. INTRODUCTION

RF beamforming optimization traditionally relies on geo-
metric models and signal processing techniques. Recent ad-
vances in neural scene representation through NeRF (Neural
Radiance Fields) enable new approaches that incorporate 3D
scene understanding into wireless communication optimiza-
tion. This paper presents a neural beamforming system that
combines scene priors from NeRF representations with Chan-
nel State Information (CSI) to predict optimal beam directions.

Our contribution is a minimal, reproducible benchmark that
demonstrates the integration of scene understanding with RF
optimization, complete with calibration analysis and auto-
mated figure/table generation for reviewer verification.

II. RELATED WORK

Neural scene priors have quickly become a powerful ab-
straction for encoding geometry and materials; Neural Ra-
diance Fields (NeRF) [1] inspire our use of compact scene
features to regularize beam selection under sparse radio ob-
servations. In mmWave systems, learning-based beam selec-
tion and blockage prediction have shown clear gains over
exhaustive search, particularly when augmented with side
information such as sub-6 GHz channels or visual context [2].
Classical propagation studies establish the viability of high-
frequency cellular links and motivate aggressive beamforming
under dynamic blockage [3]. Beyond accuracy, deployment
demands calibrated confidence: temperature scaling provides a
simple post-hoc fix for probabilistic predictions [4], commonly
assessed with Expected Calibration Error (ECE) [5] and Brier
score [6]. Our approach differs by fusing scene priors with CSI
in a lightweight network and by reporting beam-selection ac-
curacy alongside calibration metrics, presenting Pareto trade-
offs across beam counts and runtime.

III. METHOD
A. Neural Architecture

We use RFBeamformingNN to output beam logits from a
concatenated scene+CSI feature vector. The network processes
110-dimensional inputs:

o NeRF scene features (50 dims): Synthetic depth maps
and material properties from neural radiance field repre-
sentation

o WiFi CSI (40 dims): Channel state information with
noise

o RF environment (20 dims): Signal strength, interference
patterns, temporal dynamics

The backbone consists of fully-connected layers (128— 64
neurons) with batch normalization and dropout for regular-
ization. A supervised surrogate trains with cross-entropy loss
to the simulated optimal beam, followed by Platt scaling for
calibration.

B. Evaluation Metrics

We evaluate using multiple metrics:

« Exact Accuracy: Percentage of perfectly predicted beam
indices

e Succ@=+1: Success rate where |5 — b < 1 on dis-
crete beam index; for 8/12/16 beams, bin widths are
45°/30°/22.5°

o ECE: Expected Calibration Error (15 equal-width bins)
for uncertainty quantification

o Brier Score: Probabilistic accuracy metric

Temperature 7' > 0 is fitted on a held-out calibration set by
minimizing negative log-likelihood; we report ECE (15 equal-
width bins) and Brier on the test set, pre/post scaling.

Temperature scaling optimizes the calibration temperature T’
to minimize negative log-likelihood on a held-out calibration
set.

IV. EXPERIMENTAL SETUP

V. EXPERIMENTAL SETUP

The environment simulator generates synthetic RF sce-
narios with scene geometry and interference patterns. We
train on 4000 samples with 60/20/20 train/calibration/test
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TABLE I
BEAMFORMING NN SUMMARY (16 BEAMS, 22.5° SPACING).

Train time (s) 0.618
Accuracy (exact) 0.441
Succ@ +1 0.520
ECE (pre — post)  0.169—0.073
Brier (pre — post)  0.752—0.720

TABLE 11
DISCRETE BEAM COUNT SWEEP: SUCC@ =1 TOLERATES +22.5° ERROR
FOR ADJACENT BEAMS.

Beams  Spacing Acc  Succ@=+1  Time (s)
8 45.0°  0.378 0.522 3.496

12 30.0°  0.509 0.589 2.488

16 22.5°  0.441 0.520 2.701

Reliability (post-calibration)
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Fig. 1. Post-calibration reliability diagram showing improved calibration after
Platt scaling. ECE values match Table 1.

split (seeds 42/7/8), using sklearn MLPClassifier with Adam-
equivalent optimization and learning rate 3e-3. The discrete
beam sweep evaluates 8, 12, and 16 beam configurations

to analyze the accuracy-complexity trade-off. Dataset size:
N=4000, N_test=800, N_cal=600.

VI. RESULTS

Sweep across beam counts:

The results demonstrate that neural beamforming achieves
competitive accuracy while providing well-calibrated uncer-
tainty estimates. The Succ@=+1 metric shows practical ro-
bustness to minor beam selection errors. Temperature scaling
consistently improves calibration (ECE reduction) without
sacrificing accuracy.

VII. ANALYSIS

Figure 1 shows the reliability diagram after temperature
scaling, demonstrating improved calibration where confidence

Pareto: Succ@=1 vs Time (beams annotated)
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Fig. 2. Pareto analysis: Succ@=1 vs wall-clock time for different beam
counts (8, 12, 16).
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Fig. 3. Summary of key performance metrics including accuracy, calibration
error, and Brier scores.

aligns with accuracy. Figure 2 presents the trade-off between
beam count and computational cost, with 12 beams providing
a good balance.

The temperature scaling effectively reduces miscalibration
while maintaining predictive accuracy, crucial for deployment
in safety-critical RF applications where uncertainty quantifi-
cation is essential.

VIII. REPRODUCIBILITY

make -f Makefile beamnn all produces metrics/-
figures and this PDF. The complete pipeline includes:

1) Synthetic data generation from RF environment

2) Neural network training with cross-entropy loss

3) Temperature scaling calibration

4) Automated table/figure generation

5) LaTeX compilation



Code listing (core network architecture):

— NeRF scene representation (depths and

material properties)

— WiFi Channel State Information (CSI)

It outputs predicted optimality scores for

different beamforming angles.

Optional features:
— Position head: directly predicts emitter

(x,y) coordinates

— TDoA module: integrates Time Difference

of Arrival measurements

def __init__ (self,

input_dim=110,

hidden dim=128,

output_dim=10,

dropout=0.2,

position_head: bool = False,

pos_bounds: Optional [Tuple[
Tuple[float, float], Tuple[
float, float]]] = None,

tdoa_sensors: Optional [Dict [
str, Tuple[float,float]]]

= None,
tdoa_ _huber_delta: float =
3.0) :
mmmn
Initialize the RF Beamforming neural
network.
Args:

input_dim: Dimension of input
features (scene + CSI)
hidden_dim: Dimension of hidden
layers
output_dim: Number of beam angle
options to predict
dropout: Dropout rate
position_head: Whether to include
a position regression head
pos_bounds: Position bounds for
the position head as ((xmin,
xmax), (ymin, ymax))
tdoa_sensors: Dictionary mapping
sensor IDs to positions (x, V)
tdoa_huber_delta: Huber loss delta
parameter for TDoA residuals
mmmn
super (RFBeamformingNN, self).__init___
()

self.input_dim = input_dim
self.output_dim = output_dim

# Network architecture - backbone

self.fcl = nn.Linear (input_dim,
hidden dim)

self.bnl = nn.BatchNormld (hidden dim)

self.fc2 = nn.Linear (hidden dim,
hidden_dim // 2)

self.bn2 = nn.BatchNormld (hidden_dim
// 2)

self.fc3 = nn.Linear (hidden dim // 2,
output_dim)

# Activation functions
self.relu = nn.ReLU()
self.dropout = nn.Dropout (dropout)

# Position head (optional)
self._position_head_enabled = bool (
position_head)
self._pos_bounds = pos_bounds
if self._position _head enabled:
self.position_head = PositionHead/(
input_dim, hidden=hidden_dim,
pos_bounds=pos_bounds)
else:
self.position_head = None

# TDoA module (optional)
1f tdoa _sensors 1s not None:
sensors = {k: SensorSpec (k, tuple(
v), 0.0) for k, v in
tdoa_sensors.items ()}
self.tdoa _module =
TDoAResidualModule (sensors,
huber delta=tdoa_huber_delta)
else:
self.tdoa _module = None

def forward(self, x):

mmn

Forward pass through the network.

Args:
x: Input tensor containing scene
and CSI data

Returns:
Dictionary with:
- "logits": Predicted beam angle
scores
— "pos_xy": Predicted emitter
position (if position_head
is enabled)
mmn
# Ensure input has the right shape
if x.dim() == 1:
X = x.unsqueeze (0)

Main beamforming network

= self.relu(self.bnl(self.fcl(x)))
= self.dropout (f)

= self.relu(self.bn2(self.fc2(f)))

SIS

IX. CONCLUSION

This neural beamforming benchmark demonstrates the in-
tegration of scene understanding with RF optimization in a
minimal, reproducible framework. The automated calibration
analysis and multi-metric evaluation provide a foundation for
future research in neural wireless communication systems.

Limitations: Results use synthetic NeRF-like scenes; sim-
to-real generalization is untested. Future work: real scans,
hardware-in-the-loop beam sweeps.

Future work will explore larger scene databases, real-world
validation, and integration with advanced NeRF models for
improved scene representation.



(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in European Conference on Computer Vision (ECCV), 2020.
M. Alrabeiah and A. Alkhateeb, “Deep learning for mmwave beam and
blockage prediction using sub-6 ghz channels,” IEEE Communications
Letters, vol. 24, no. 12, pp. 2795-2799, 2020.

T. S. Rappaport, S. Sun, R. Mayzus, and et al., “Millimeter wave mobile
communications for 5g cellular: It will work!” IEEE Access, vol. 1, pp.
335-349, 2013.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine
Learning (ICML), 2017.

M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated
probabilities using bayesian binning,” in AAAI Conference on Artificial
Intelligence, 2015.

G. W. Brier, “Verification of forecasts expressed in terms of probability,”
Monthly Weather Review, vol. 78, no. 1, pp. 1-3, 1950.



	Introduction
	Related Work
	Method
	Neural Architecture
	Evaluation Metrics

	Experimental Setup
	Experimental Setup
	Results
	Analysis
	Reproducibility
	Conclusion
	References

