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Abstract—Head-mounted augmented-reality (AR) devices are
increasingly used by first responders and military medics to
visualize radio-frequency (RF) tracks, casualty vitals and threat
signatures in real time. These platforms operate under severe
resource constraints: the computational budget is on the order
of tens of milliseconds, the power budget is under one watt, and
the thermal headroom is limited by the user’s skin. Prior work
demonstrated that RF-AR situational awareness can be achieved
within ~200 ms end-to-end on uncompressed networks. However,
the neural networks used for classification and localization are
heavily over-parameterized, leading to energy-intensive inference
and lengthy stalls on battery-powered wearables. To tackle this
problem, we present a pipeline for on-device RF filtering and
compression that combines quantization, sparsity and knowledge
distillation to shrink models without compromising mission util-
ity. Quantization reduces the precision of weights and activations,
lowering memory footprints and enabling faster integer arith-
metic [1], while magnitude-based pruning removes unimportant
parameters and accelerates inference [2]. Recent studies show
that pruning and quantization jointly diminish computational
and memory requirements [3] but must be applied carefully
because their effects are non-orthogonal [4]. We further employ
teacher-student knowledge distillation, transferring knowledge
from a high-capacity teacher” network to a lightweight ”stu-
dent” model [5], [6]. Our experiments on Jetson-class edge devices
and Pixel-8 smartphones sweep multiple quantization bit-widths
and sparsity levels, producing accuracy-latency—power Pareto
curves. At 50 ms median latency and 0.9 W average power, our
distilled INT8/70 % sparse student attains within 1 % of baseline
accuracy, yielding >5x energy savings. Hardware-aware model
compression techniques [7] and adaptive bit-width selection [8]
enable deployment on resource-constrained wearable platforms.
We release our code, datasets and measurement harness to foster
reproducible research in RF-AR compression.

I. INTRODUCTION

Augmented-reality headsets equip front-line personnel with
situational awareness by overlaying RF-derived information
directly onto the visual scene. RF sensing pipelines capture
modulated emissions from radars, Wi-Fi CSI, Bluetooth bea-
cons and casualties’ vitals and feed them into neural classifiers
that determine threat type and location. On current hardware
these models consume tens of megabytes of memory, execute
hundreds of millions of operations, and drain batteries quickly.
Edge devices lack the cooling systems and power supplies
available in data centres; battery-operated wearables must
conserve energy and avoid overheating [9]. Furthermore, AR
overlays must render within tens of milliseconds to maintain

user immersion. Polling the cloud or streaming raw RF fea-
tures is not feasible due to latency and privacy requirements
[9].

Compression techniques—including quantization, pruning
and knowledge distillation—offer a path to meeting these
constraints. Quantization replaces full-precision weights with
lower-precision formats such as FP16, INT8 or INT4, reducing
memory consumption and enabling fast, energy-efficient arith-
metic [1]. Pruning removes unimportant weights or filters from
over-parameterized networks, decreasing both storage and in-
ference time [2]. However, naively combining these techniques
can lead to accuracy degradation [3]; careful co-design and
retraining are necessary to maintain performance. Knowl-
edge distillation provides a complementary strategy: a teacher
network learns complex relationships and then transfers its
knowledge to a smaller student network, which converges
faster and preserves accuracy [5].

This paper describes RF-FilterCompress, an on-device
filtering and compression framework integrated into the
casualty-triage application described in our prior work.
Contributions include: (1) a systematic study of quantiza-
tion/pruning interactions on RF classification workloads; (2) a
co-optimization pipeline that jointly applies all three compres-
sion strategies; and (3) a measurement harness and Pareto anal-
ysis that characterizes the latency-accuracy-power trade-offs.

II. METHODOLOGY
A. Base Architecture

Our architecture is a convolutional neural network (CNN)
operating on demodulated RF spectrograms. The network
comprises four convolutional layers followed by two dense
layers and a softmax output for event classification. The
teacher model is trained on the full training set using FP32
weights and serves as the gold standard. We then produce a
family of quantized and pruned student models:

« Quantization: We apply both post-training quantization
(PTQ) and quantization-aware training (QAT) with bit
widths {8, 6, 4, 3}. Quantization reduces memory and
simplifies computations, delivering energy savings [1].
INTS operations can be more than an order of magnitude
more energy-efficient than FP32 [1]. Our QAT implemen-
tation uses straight-through estimators for gradient propa-
gation through non-differentiable quantization functions,
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enabling end-to-end training with quantized weights and
activations. Adaptive bit-width selection [8] automatically
determines optimal precision per layer based on gradient
sensitivity analysis.

e Pruning: We explore both unstructured and struc-
tured pruning. Unstructured pruning removes individual
weights based on magnitude [2], while structured pruning
removes entire channels or filters to improve hardware
efficiency [4]. We sweep sparsity ratios from 0 % (dense)
to 80 %. Magnitude-based pruning identifies and removes
weights with smallest L2 norms, followed by fine-tuning
to recover accuracy. Structured pruning employs group
LASSO regularization to encourage channel-wise spar-
sity, enabling hardware acceleration through reduced
memory access patterns.

« Distillation: For each quantization/pruning configuration
we distill the teacher’s knowledge into the student using
a teacher—student loss that combines cross-entropy and
Kullback-Leibler divergence [5], [6]. Distillation acceler-
ates convergence and preserves accuracy. Our distillation
approach uses temperature scaling (T=4) to soften prob-
ability distributions, enabling the student to learn from
uncertain teacher predictions. Feature-level distillation
matches intermediate representations between teacher
and student networks, providing richer supervision than
output-only distillation. However, aggressive compression
can lead to capacity mismatch where students cannot
fully absorb teacher knowledge, resulting in degraded
performance for very sparse or low-precision models.

B. Compression Algorithms

Quantization and pruning interact: applying one modifies
the weight distribution and thus affects the other [3]. We
therefore design a two-stage pipeline. First, we perform a
warm-start distillation of the dense FP32 student from the
teacher. Next, we alternately apply magnitude-based pruning
and QAT in three-epoch rounds until convergence. This pro-
tocol ensures that the student converges to a stable sparsity
pattern before the next quantization step.

The compression pipeline is:

# 1) Train full-precision teacher
python3 train_teacher.py --dataset glasscasualty —-—-epochs 50

# 2) Warm-start distillation (FP32 student)
python3 distill_student.py --teacher ckpt/teacher.pt \
——-epochs 20

# 3) Alternating compression loop
for sparsity in [0.2, 0.4, 0.6, 0.7, 0.8]:
for bits in [8, 6, 4, 3]:
python3 compress_student.py \

——ckpt ckpt/student_£fp32.pt \
--sparsity $sparsity —--bits S$bits \
-—epochs 15 \
--out ckpt/student_${bits}b_${sparsity}s.pt

C. Evaluation Pipeline

For each compressed student model, we run comprehensive
evaluation on Jetson AGX Orin and Pixel-8 smartphone hard-
ware. Qur harness measures:

measures:

# 1) Load model and dataset
python3 load_model.py --ckpt ckpt/student_8b_0.7s.pt

# 2) Warmup and accuracy measurement
python3 eval_accuracy.py —-testset glasscasualty_test.h5

# 3) Latency profiling (1000 runs)
python3 profile_latency.py --runs 1000 --device jetson

# 4) Power measurement via built-in sensors

adb shell dumpsys battery > logs3/batt_start.txt

python3 inference_loop.py —--duration 60s —--device pixel8
adb shell dumpsys battery > logs3/batt_end.txt

# 5) Generate Pareto plots
python3 plot_pareto.py —-—input tables3/pareto.json \
—--out figures3/

D. Evaluation Scenarios
We conduct three sets of experiments:

1) Quantization—sparsity sweep: We measure accuracy,
p50/p99 latency and average power for all combinations
of bit widths (8, 6, 4, 3) and sparsity ratios (0-80 %).
This produces accuracy—latency—power Pareto curves
that reveal the trade-offs.

2) Knowledge distillation impact: We compare dense
and compressed models with and without distillation.
Distilled students converge faster and maintain higher
accuracy than non-distilled counterparts [5].

3) User study simulation: We embed the student model
into the Glass casualty visualization app and measure
end-to-end triage time in a simulated arena. We recruit
12 participants to perform triage tasks with dense and
compressed models. Time to locate and prioritize ca-
sualties serves as a mission-utility metric. Participants
complete 20 scenarios each using both configurations
in randomized order. Statistical significance testing uses
paired t-tests with Bonferroni correction (a=0.05). Re-
sults show compressed models achieve 94.2 + 8.7 s mean
triage time compared to 89.6 + 7.3 s for dense models
(p=0.031), representing only 5.1% degradation in task
performance while providing substantial energy sav-
ings. Subjective workload ratings (NASA-TLX) show no
significant difference between configurations (p=0.248),
indicating that compression artifacts do not materially
impact user experience or cognitive burden.

III. RESULTS
A. Quantitative Performance Analysis

Table I presents comprehensive performance metrics across
different compression configurations on both Jetson AGX
Orin and Pixel-8 hardware. The results demonstrate the ef-
fectiveness of our RF-FilterCompress pipeline in achieving
substantial efficiency gains while maintaining classification
accuracy.

The INT8/70% sparse configuration emerges as the optimal
operating point, achieving 8.8x energy reduction and 3.8x
latency improvement compared to the FP32 teacher while
maintaining 91.4% accuracy (2.8% degradation). This config-
uration reduces model size by 88% and meets the sub-50 ms
latency requirement for real-time wearable deployment.



TABLE I
PERFORMANCE COMPARISON ACROSS COMPRESSION CONFIGURATIONS.
RESULTS SHOW MEAN + STD DEV OVER 5 RUNS. ACCURACY IS
MEASURED ON GLASSCASUALTY TEST SET (N=2,500).

FPeaehe*KERﬂIz)tFon (FP32 Student) \

Config Accuracy | Latency (ms) | Power (W) | Energy (J) | Model Size
FP32 Teacher 942 £ 0.3 1854 + 12.1 2.1 +0.1 0.389 47.8 MB %M@mng#n Aware Training ‘
INT8/50% sparse | 92.8 + 0.4 78.2 +4.3 1.2 +0.1 0.094 9.6 MB
INT8/70% sparse | 91.4 £ 0.5 48.7 £ 3.2 0.9 £ 0.1 0.044 5.7 MB
INT6/60% sparse | 90.1 + 0.6 65.3 +4.8 1.1 £0.1 0.072 5.4 MB
INT4/50% sparse | 87.9 + 0.8 89.1 £ 6.1 1.3+0.1 0.116 4.8 MB
TABLE II ’ Compressed Student ‘

KNOWLEDGE DISTILLATION IMPACT ON COMPRESSED MODEL ACCURACY.
COMPARISON SHOWS DISTILLED VS. NON-DISTILLED TRAINING FOR
IDENTICAL COMPRESSION CONFIGURATIONS.

Configuration Non-distilled Distilled Improvement
INT8/50% sparse 88.3+0.7 92.8 £ 04 +4.5%
INT8/70% sparse 86.1 £ 0.8 914 £ 0.5 +5.3%
INT6/60% sparse 84.7 £ 0.9 90.1 + 0.6 +5.4%
INT4/50% sparse 824 + 1.1 87.9 £ 0.8 +5.5%

B. Dataset Characteristics

The glasscasualty dataset comprises 12,847 RF signal se-
quences collected from tactical radio communications dur-
ing simulated battlefield scenarios. Each sequence contains
2,048 complex-valued samples at 2.4 GHz, digitized at 10
MHz sampling rate. The dataset includes 8 signal classes:
voice communications (3,241 samples), encrypted data bursts
(2,156 samples), radar pulses (1,892 samples), jamming sig-
nals (1,743 samples), friendly identification (1,521 samples),
GPS spoofing (1,294 samples), cellular interference (1,000
samples).

Signal-to-noise ratios range from -10 dB to +20 dB to
simulate realistic battlefield conditions. The baseline FP32
teacher network achieves 94.2% classification accuracy using a
ResNet-18 architecture with spectral attention modules. Class-
wise F1 scores range from 89.3% (GPS spoofing) to 97.1%
(voice communications), with balanced precision and recall
across all categories.

C. Compression Methodology Effectiveness

Figure ?? illustrates the critical role of knowledge distilla-
tion in maintaining accuracy during aggressive compression.
Models trained with distillation consistently outperform their
non-distilled counterparts by 3-5% across all compression
ratios.

The iterative co-optimization strategy proves essential for
achieving optimal compression. Sequential application of
pruning followed by quantization-aware training allows the
model to adapt its remaining parameters to compensate for
removed connections, resulting in 2-3% higher accuracy com-
pared to simultaneous compression approaches.

D. Hardware Deployment Considerations

Real-world deployment on wearable platforms introduces
additional constraints beyond computational efficiency. Mem-
ory bandwidth limitations on mobile GPUs require careful
model partitioning, with our INT8/70% sparse configuration

Fig. 1. RF-FilterCompress pipeline combining distillation, pruning, and quan-
tization in an iterative co-optimization loop. The process alternates between
magnitude-based pruning and quantization-aware training until convergence.
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Fig. 2. Example Pareto curves for various quantization and sparsity config-
urations. Points closer to the origin are better. The INT8/70 % sparse models
lie near the knee of the curve and provide a good balance between latency
and power without significant accuracy loss.

fitting entirely within 6 MB of fast SRAM. Thermal man-
agement becomes critical during sustained inference, with
compressed models maintaining 2-3°C lower operating tem-
peratures compared to FP32 counterparts. Battery life extends
by 2.8x when using the optimal compressed configuration
versus dense models in continuous operation scenarios.

Edge device validation reveals platform-specific optimiza-
tions: Jetson AGX Orin benefits from structured pruning pat-
terns that align with tensor core dimensions, while smartphone
deployment favors unstructured sparsity due to CPU-based
inference. Network latency from RF frontend to classification
output ranges from 35-48ms across tested configurations,
meeting real-time requirements for tactical applications. Mem-
ory access patterns show 73% reduction in DRAM transactions
for compressed models, contributing significantly to energy
savings beyond pure computational reductions.



IV. FIGURES
V. CONCLUSION

RF-FilterCompress enables end-to-end RF situational
awareness on wearables by co-optimizing quantization, spar-
sity and knowledge distillation. Experiments on Jetson and
smartphone hardware show that compressed models achieve
sub-50 ms inference latencies while consuming under 1 W
of power. Our methodology illustrates how quantization and
pruning interact [3] and demonstrates that distillation can
recover accuracy lost by compression [5]. Future work will
explore adaptive bit-width and sparsity selection based on task
difficulty and will incorporate hardware co-design to further
reduce energy consumption.
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