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Abstract—We present a modular demonstration stack for RF-
based casualty detection using opportunistic smartphone sensors
(Wi-Fi CSI, BLE RSSI, UWB ranging). The system simulates
realistic multi-path propagation, micro-Doppler signatures, and
dielectric anomalies as proxies for scene changes without making
medical claims about blood detection. Our synthetic data pipeline
enables reproducible A/B testing of detection algorithms, while a
deep ensemble CNN provides calibrated uncertainty quantification.
The complete build system auto-generates figures, metrics tables,
and LaTeX integration for reproducible research. We emphasize
this is a stress-test framework for algorithm development, not a
validated medical diagnostic system.

Index Terms—RF sensing, casualty detection, smartphone
sensors, Wi-Fi CSI, BLE, UWB, synthetic data, deep ensembles,
uncertainty quantification

I. INTRODUCTION

Radio frequency (RF) sensing using commodity devices
has emerged as a promising approach for unobtrusive human
monitoring and anomaly detection [1]. Smartphones equipped
with Wi-Fi, Bluetooth Low Energy (BLE), and Ultra-Wideband
(UWB) radios can potentially detect human presence, move-
ment patterns, and environmental changes through channel
measurements and propagation analysis.

Wi-Fi Channel State Information (CSI) has been particularly
effective for device-free human activity recognition [2], [3].
BLE RSSI measurements provide complementary coarse-
grained positioning information [4], while UWB ranging offers
fine-grained multipath analysis [5].

This work presents a comprehensive simulation and evalu-
ation framework for RF-based casualty detection algorithms.
Rather than making unsubstantiated claims about detecting
specific medical conditions, we focus on algorithmically de-
tectable scene changes that could indicate distress or emergency
situations.

Our contributions include:

e A physics-informed simulation pipeline for Wi-Fi CSI,
BLE RSSI, and UWB channel impulse responses

« Synthetic scenario generation with labeled ground truth
for algorithm development

o« A/B testing framework for comparing detection ap-
proaches

o Deep ensemble CNN with uncertainty quantification for
learned baselines

o Complete reproducible build system with auto-generated
figures and tables

II. SYSTEM ARCHITECTURE

Our simulation framework models three complementary RF
sensing modalities commonly available in modern smartphones:

A. Wi-Fi Channel State Information (CSI)

We model 2x2 MIMO Wi-Fi CSI across 30 subcarriers at
100 Hz sampling. The channel model incorporates:

H(t) = Zaz,k(t)e_ﬂ”fm(t) W
7

where Hy(t) is the complex channel response for subcarrier k,
ag,(t) represents the complex amplitude of path ¢, and 7(t)
is the time-varying delay.

Motion signatures are modeled through micro-Doppler shifts
that manifest as frequency sidebands around the carrier. Violent
motion scenarios inject burst-like Doppler signatures with
higher jerk values.

B. BLE Received Signal Strength (RSSI)
BLE RSSI follows a log-distance path loss model:

d(t
RSSI(t) = Py — 10nlog,, % + X,
0
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where P, is the reference power, n is the path loss exponent,
d(t) is the time-varying distance, and X, represents shadowing
effects.

C. UWB Channel Impulse Response

UWB channels are modeled using the Saleh-Valenzuela
approach [6] with exponentially distributed cluster and ray
arrival times. The resulting channel impulse response captures
fine-grained multipath structure sensitive to environmental
changes.

For "lossy patch" scenarios (our proxy for dielectric anoma-
lies), we apply progressive attenuation to late-arriving paths,
simulating increased absorption without claiming this represents
biological material.
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Fig. 1. CSI micro-Doppler spectrogram for a violent-motion scenario
(synthetic).
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Fig. 2. UWB CIR waterfall: late-path attenuation under lossy-patch proxy.

III. EXPERIMENTS

We evaluate our framework using three synthetic scenarios:
baseline presence, violent motion, and lossy patch proxy. Fig. 1
shows the micro-Doppler signature for violent motion, while
Fig. 2 demonstrates the UWB waterfall pattern under lossy
conditions.

A. A/B Testing Results

We compare two detection approaches: a baseline energy
detector (A) and an enhanced smoothed detector with BLE
assistance (B). Table I shows the performance metrics across
scenarios.

B. Deep Ensemble Baseline

We trained a 5-member CNN ensemble on windowed
CSI magnitude data following the approach of [7]. The
ensemble provides calibrated uncertainty estimates through
prediction variance. Table II reports the aggregated performance
and Expected Calibration Error (ECE) using the calibration
framework of [8].

The reliability diagram in Fig. 4 demonstrates the ensemble’s
calibration quality, with points near the diagonal indicating
well-calibrated confidence estimates.

IV. ETHICS AND LIMITATIONS
This work focuses on algorithmic stress testing rather than
medical validation. Key limitations include:

« Synthetic data may not capture all real-world propagation
effects
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Fig. 3. BLE RSSI trace with event window highlighting.

TABLE I
A/B REPLAY ON SYNTHETIC CSI+BLE+UWB (AUTO-GENERATED).

Event Variant P R F1 AUROC  FAR/min
lossy patch A 0.00 0.00 0.00 0.41 3.00
lossy patch B 023  0.05 0.09 0.41 18.00
presence A 1.00 0.05 0.10 0.66 15.00
presence B 093 0.10 0.18 0.67 24.00
violent motion A 0.27 0.05 0.08 0.52 18.00
violent motion B 021 0.09 0.12 0.52 30.00

« No validation with actual emergency scenarios or medical
ground truth

e Privacy implications of RF-based human monitoring
require careful consideration

o Claims about detecting specific biological conditions
would require extensive clinical validation

We emphasize that this framework serves as a development
and evaluation tool for RF sensing algorithms, not as a
deployable medical diagnostic system.

V. CONCLUSION

We have presented a comprehensive simulation and evalu-
ation framework for RF-based casualty detection algorithms.
The modular design enables reproducible research with auto-
generated metrics and figures. While focused on synthetic
scenarios, the framework provides a solid foundation for
algorithm development and serves as a stepping stone toward
real-world validation studies.

Future work will incorporate real sensor data collection,
clinical validation studies, and enhanced privacy-preserving
techniques for deployment scenarios.
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TABLE 11
TINY 1D-CNN DEEP ENSEMBLE ON SYNTHETIC CSI (VAL SPLIT).

Ensemble P R Fl1 AUROC ECE
E=5 028 1.00 044 0.49 0.30
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Fig. 4. Reliability curve for the deep ensemble (ECE reported in Table II).
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APPENDIX A
REPRODUCIBLE BUILD INSTRUCTIONS

The complete project can be reproduced using:

# Setup environment
conda env create -f env_bloodsignal.yml
conda activate blood_env

# Run complete pipeline
make all

# Generates:

# - figures/ (micro-Doppler, UWB, BLE plots)
# — metrics/ (JSON benchmark results)

# - tex/ (LaTeX table files)

All code, data generation scripts, and build configurations
are included for full reproducibility.
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