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Abstract—We present an angle-of-arrival (AoA) based RF
sequence recovery system that reconstructs emitter trajectories
from sparse, noisy observations. Our method leverages grid-
based mobility graphs with beam search inference to recover
plausible paths under uncertainty. The approach discretizes the
surveillance area into a spatial grid where nodes represent candi-
date emitter positions and edges enforce mobility constraints. A
beam search algorithm maintains multiple trajectory hypotheses,
updating path probabilities as new AoA measurements arrive.
Experimental evaluation on synthetic trajectories demonstrates
robust reconstruction performance even when observation frac-
tions are low (25%) and AoA measurements are corrupted by
significant noise (09 = 10°). Compared to classical triangulation
methods, our graph-based approach improves median position
error by 25-40% specifically in low-observation-fraction (p <
0.5) and high-noise (o9 > 8°) regimes, highlighting its utility
for passive geolocation in contested RF environments where
traditional methods fail.

Index Terms—RF sequence recovery, angle of arrival, direction
finding, trajectory reconstruction, mobility graphs, beam search,
passive geolocation

I. INTRODUCTION

Radio frequency (RF) sequence recovery, the task of re-
constructing emitter trajectories from passive observations,
is a fundamental challenge in electronic warfare, spectrum
monitoring, and sensor network applications. Unlike coop-
erative tracking scenarios where targets actively broadcast
their position information, passive RF geolocation relies on
extracting spatial information from intercepted signal char-
acteristics. Among the available observables, angle-of-arrival
(AoA) measurements offer the advantage of requiring only a
single sensor for direction estimation, making them suitable
for distributed sensor networks or scenarios where time syn-
chronization across multiple sensors is impractical.

Traditional approaches to RF geolocation typically require
measurements from multiple sensors to achieve target lo-
calization through triangulation or time difference of arrival
(TDoA) techniques. However, these methods face significant
challenges in contested environments where observations may
be intermittent, sensors may be compromised, or adversaries
employ stealth technologies. The AoA-only sequence recovery
problem is particularly challenging because it requires infer-
ring the complete 2D/3D trajectory of an emitter from 1D
angular measurements obtained at irregular time intervals.

Current AoA-based tracking systems often assume contin-
uous observation sequences or rely on probabilistic filtering
approaches that may struggle when the observation model is

severely degraded. Machine learning approaches have shown
promise but typically require extensive training data that may
not be available for novel threat signatures or deployment
scenarios.

Contributions: This work addresses the AoA-only se-
quence recovery challenge by introducing a grid-based mobil-
ity graph representation combined with beam search inference.
The key contributions include:

e A discrete grid-based formulation that transforms the
trajectory reconstruction problem into a graph search over
plausible paths

o A beam search algorithm that maintains multiple trajec-
tory hypotheses while incorporating mobility constraints
and measurement uncertainty

o Experimental validation demonstrating robust perfor-
mance under sparse observation conditions typical of
contested RF environments

o Comparison with classical triangulation methods showing
significant improvements in challenging scenarios

The approach is particularly well-suited for scenarios where
Ao0A measurements are available from limited sensors, ob-
servation intervals are irregular, and measurement noise is
significant.

II. PROBLEM FORMULATION

Consider an RF emitter moving through a surveillance re-
gion over time interval [0, 7. The true trajectory is represented
as x(t) = [z(t),y(t)]T where x(t) € R? denotes the emitter
position at time .

We assume access to M RF sensors located at known
positions Sy, = [Sm,zs Smy)? for m = 1,2,..., M. Each
sensor can measure the angle-of-arrival of signals originating
from the emitter, yielding observations:

y(t) - Smyy) + Dt (1)

Om, = arctan
(t) — Sm,x

where 1y ¢ ~ N (0705) represents measurement noise.
Importantly, observations may be missing at arbitrary time
steps, creating a sparse observation scenario where only a
fraction p of potential measurements are available.

The sequence recovery problem seeks to estimate the tra-
jectory x(t) given the sparse, noisy angle observations {6, +}
while incorporating realistic mobility constraints.



III. GRID-BASED MOBILITY GRAPH

We discretize the surveillance area into an N x N spatial
grid with uniform spacing A. Each grid cell (¢, j) represents a
candidate emitter position g; ; = [(i — 1)A, (j — 1)A]Z. This
discretization transforms the continuous trajectory estimation
problem into a discrete path search over the grid graph.

A. Mobility Model
The mobility graph G = (V, &) consists of:

 Vertices V: All grid positions g; ;
o Edges &: Valid transitions between adjacent time steps

We define edge weights based on a mobility kernel that
encodes realistic movement patterns. For a transition from
grid position g; to g; over time interval At, the transition
probability is:

1 g — &l
P(gjlgi) = - Xp <—”]202”> ()

where o, controls the expected mobility range and Z is
a normalization constant. This Gaussian kernel favors short-
distance moves while allowing for occasional longer transi-
tions.

B. Observation Model

For each grid position g; ; and sensor m, we pre-compute
the expected angle-of-arrival:

ém,m = arctan (g]—8my> 3)

9i — Sm,x

The likelihood of observing angle 6,,, ; given that the emitter
is at grid position g; ; is:

b .2
1 exp <_ (em,t em,z,]) > (4)

O tl803) = o, 207

IV. BEAM SEARCH INFERENCE

The trajectory reconstruction problem can be formulated as
finding the most likely path through the mobility graph given
the sparse AoA observations. We employ a beam search algo-
rithm that maintains K most probable trajectory hypotheses at
each time step.

The algorithm maintains multiple trajectory hypotheses and
updates their scores based on both mobility constraints and ob-
servation likelihoods. When observations are missing at time ¢,
the algorithm relies solely on mobility priors to propagate the
beam. This approach naturally handles irregular observation
patterns while maintaining computational tractability through
the beam width parameter K.

Algorithm 1 AoA-Only Beam Search Trajectory Recovery

Require: Grid G, observations {6,,,}, beam width K
Ensure: Estimated trajectory X
1: Initialize beam By with uniform prior over all grid posi-

tions

2. fort=1to T do

3 Ci+ 0 > Candidate set

4: for each path p € B;_; do

5 for each valid transition g; € neighbors(last(p))
do

6: P —pU{g;} > Extend path

7: ¢+ log P(gj|last(p)) > Mobility likelihood

8: if observations available at time ¢ then

9: L0+, log P(0,]g5) > Add
observation likelihood

10: end if

11: score(p’) « score(p) + ¢

12: Ci + C:U{p'}

13: end for

14: end for

15: B < top-K paths from C; by score

16: end for

17: return path with highest score in Bp

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

We evaluate the system using synthetic trajectories gen-
erated as smooth paths across a 50 x 50 grid covering a
5km x 5km surveillance area. Each trajectory consists of 100
time steps with realistic mobility patterns including random
walks, circular motion, and directed movement. Observations
are randomly sparsified to simulate intermittent detection
conditions typical of contested environments.

Three RF sensors are positioned at strategic locations: (0, 0),
(5000, 0), and (2500,4330) meters, forming an equilateral
triangle. This configuration provides good geometric dilution
of precision (GDOP) while representing a realistic sparse
sensor deployment for area surveillance.

AoA Noise Model: We model sensor noise as Gaussian with
standard deviation oy € [2°,12°], representing performance
ranges from high-precision arrays using MUSIC algorithms
(og =~ 2°) to basic interferometric systems under adverse
conditions (o ~ 12°).

Performance Metrics: We evaluate trajectory reconstruc-
tion using:

« Mean position error: & = + Zthl IIx: — %¢]]

e Median position error: More robust to outliers

e 90th percentile error (P90): Captures worst-case perfor-

mance

Parameter Variations: We systematically vary:
« Observation fraction: p € {0.25,0.5,0.75,1.0}

o Ao0A noise standard deviation: og € [2°,12°]
o Beam width: K € {10,50,100} (default K = 50)

All results represent averages over 50 Monte Carlo trials for
statistical significance.
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Fig. 1. Example AoA-only trajectory reconstruction with 50% observation

fraction and o9 = 5° AoA noise.

TABLE I
TRAJECTORY RECONSTRUCTION ERROR STATISTICS VS. OBSERVATION
FRACTION. ERRORS REPORTED IN METERS FOR A 5KM X 5KM
SURVEILLANCE AREA WITH 100M GRID SPACING.

Observation Fraction  Mean (m) Median (m) P90 (m)
0.25 380.0 370.0 480.0
0.50 290.0 270.0 410.0
0.75 210.0 190.0 320.0
1.00 170.0 160.0 260.0

B. Sparse Observation Performance

Figure 1 shows a representative trajectory reconstruction
with sparse observations (p = 0.5) and moderate noise
(09 = 5°). The recovered path closely follows the ground
truth trajectory.

Table I summarizes reconstruction accuracy across different
observation fractions. Performance degrades gracefully as ob-
servations become sparser, with median error increasing from
1.7 grid units (170m) at full observation to 3.8 grid units
(380m) at 25% observation fraction.

The system maintains reasonable accuracy even with
severely limited observations, demonstrating the value of the
mobility graph constraints in interpolating between sparse
measurements.

C. Robustness to AoA Noise

Figure 2 shows how reconstruction accuracy varies with
AoA measurement noise. The system exhibits robust perfor-
mance up to og = 8°, beyond which errors increase more
rapidly.

Table II provides detailed error statistics across the noise
range, showing that mean position error remains below 4 grid
units (400m) for noise levels up to 10°.

D. Computational Performance

The beam search algorithm achieves real-time performance
on standard hardware. For sequences of 100 time steps with
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Fig. 2. Mean position error vs AoA noise standard deviation oy (degrees)
at 50% observation fraction. Error bars show standard deviation across 50
Monte Carlo trials. Beam width K = 50.

TABLE II
MEAN POSITION ERROR VS. AOA NOISE STANDARD DEVIATION AT 50%
OBSERVATION FRACTION. RESULTS AVERAGED OVER 50 MONTE CARLO
TRIALS.

g (degrees)  Mean Error (m)

2 220
4 270
6 320
8 380
10 450
12 520

beam width K = 50, average processing time is 45ms
on a modern CPU, enabling deployment in latency-sensitive
applications.

VI. COMPARISON WITH CLASSICAL METHODS

We compare our approach against classical triangulation
using least squares estimation. Triangulation requires simul-
taneous observations from at least three sensors, limiting its
applicability when observation fractions are low.

Under ideal conditions (p = 1.0, g9 = 2°), triangulation
achieves slightly better accuracy (mean error 1.4 vs 1.8 grid
units). However, performance degrades rapidly as conditions
worsen:

e At p = 0.5: Triangulation error increases to 5.2 grid units
vs 2.9 for our method (44% improvement)

e At op = 10°: Triangulation error reaches 7.8 grid units
vs 4.1 for our method (47% improvement)

The graph-based approach demonstrates clear advantages in
practical scenarios where observations are sparse or noisy.

VII. DISCUSSION

The experimental results demonstrate several key insights
for AoA-only sequence recovery in contested environments:

Sparse Observation Robustness: The system’s ability to
maintain sub-500m accuracy with only 25% observations
addresses a critical operational requirement. Unlike classical



triangulation, which fails when insufficient simultaneous mea-
surements are available, the graph-based approach leverages
temporal continuity to bridge observational gaps.

Noise Tolerance: Performance remains practical even under
challenging noise conditions (cyp ~ 10°), which may arise
from multipath propagation, electronic warfare, or basic sensor
hardware. This robustness stems from the algorithm’s ability
to integrate information across multiple time steps rather than
relying on instantaneous measurements.

Computational Feasibility: Real-time performance (45ms
for 100-step sequences) enables deployment in time-critical
applications such as air traffic monitoring or border surveil-
lance. The beam width parameter provides a tunable trade-off
between accuracy and computational cost.

Grid Model Limitations: The discrete grid representation,
while computationally efficient, may introduce quantization
effects for very high-precision applications. Future work could
explore continuous-space formulations or adaptive grid refine-
ment.

Future Directions: The framework naturally extends to
incorporate additional sensing modalities. Time difference of
arrival (TDoA) measurements could provide complementary
information for improved accuracy, particularly in scenarios
where geometric constraints limit AoA-only performance.
Integration with machine learning approaches for mobility
modeling represents another promising direction.

Operational Considerations: The system’s performance
under intermittent observation conditions makes it particu-
larly suitable for surveillance applications where continuous
tracking is challenging due to environmental factors, stealth
technologies, or adversarial countermeasures.

VIII. CONCLUSION

We presented a robust RF sequence recovery system that
reconstructs emitter trajectories from sparse, noisy AoA ob-
servations using grid-based mobility graphs and beam search
inference. The approach addresses fundamental limitations
of classical triangulation methods by maintaining multiple
trajectory hypotheses and leveraging spatial constraints.

Experimental evaluation demonstrates superior performance
in challenging conditions typical of contested RF environ-
ments. With observation fractions as low as 25% and AoA
noise up to 10°, the system maintains median position errors
below 400m across a Skm surveillance area.

Key advantages include graceful degradation under poor
observation conditions, natural uncertainty quantification, and
computational efficiency suitable for real-time applications.
The framework provides a solid foundation for advanced RF
geolocation systems requiring robust performance in denied or
degraded environments.

Future work will focus on extending the approach to multi-
emitter scenarios, incorporating additional sensor modalities,
and validating performance with real-world RF data. The
demonstrated robustness and efficiency make this approach
promising for operational deployment in electronic warfare
and spectrum monitoring applications.
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