Scheduling and Parallelism in RF Benchmarks:
Throughput Without Drift

Benjamin J. Gilbert
Spectrcyde RF Quantum SCYTHE, College of the Mainland
Texas City, TX 77590
Email: bgilbert2 @com.edu
ORCID: 0009-0006-2298-6538

Abstract—Benchmarking RF demodulation pipelines is often
bottlenecked by slow simulation loops. While multi-threaded
execution can reduce wall-clock time, naive scheduling may
bias robustness estimates if seeds are not managed consis-
tently. We demonstrate a scalable scheduling harness that
exploits CPU worker parallelism and batch sizing to accel-
erate benchmarks without introducing statistical drift. Using
the SignalIntelligenceSystem threading architecture, our
results show near-linear throughput scaling (up to 8x speedup)
while preserving repeatability across seeds. This enables practical
deployment of agentic sweeps and ghost mode analysis within
operational time budgets.

I. INTRODUCTION

RF benchmarking campaigns involve hundreds of simu-
lation runs across SNR, Af, modulation depth, and other
parameters. Each run can take seconds to minutes, making ex-
haustive parameter sweeps prohibitively expensive [1]. While
probabilistic agentic sweeps reduce the number of required
evaluations, and ghost mode analysis quantifies the economic
cost of false positives [2], both approaches still require sub-
stantial computational resources for practical deployment.

To make agentic sweeps and ghost analysis feasible within
operational budgets, we must reduce wall-clock runtime with-
out biasing results. Naive parallelization can introduce statis-
tical drift if random seeds, timing dependencies, or shared
resources are not managed carefully. This paper studies how
CPU worker scaling and batch sizing affect both throughput
and reproducibility in RF benchmarking workflows.

Our approach leverages the existing threading ar-
chitecture in the SignallIntelligenceSystem from
core.py, extending its _signal_processing_loop
and _data_collection_loop pattern to support batch-
parallel execution across multiple worker threads. Results
demonstrate near-linear scaling up to 8 workers with zero
statistical drift when proper seeding protocols are followed.

II. METHODS
A. SignallntelligenceSystem Threading Architecture

The SignalIntelligenceSystem in core.py al-
ready implements separation of concerns through independent
signal processing and data collection threads. This design
provides a natural foundation for parallel batch execution. We
extend this architecture by spawning W worker threads, each

)

23

24

25

26
27

consuming batches of parameter configurations from a shared
queue.

import concurrent.futures

import numpy as np

from SignalIntelligence.core import
SignalIntelligenceSystem

def run_parallel_benchmark (configs,
batch_size=16, workers=8):
sis SignallIntelligenceSystem(config,
comm_network)

def process_batch (batch_with_seed):
batch, seed_offset batch_with_seed
np.random. seed (seed_offset) #
Deterministic seeding
results []
for cfg in batch:
Process I/Q data with
consistent parameters
result = sis.process_iqg_data(cfqg)
results.append(result)
return results

Create batches with deterministic seed
offsets

batches [(configs[i:it+batch_size],

for i in range (0,

len (configs),

— i)

batch_size)]
with

concurrent.futures.ThreadPoolExecutor (ma
as executor:

futures =
[executor.submit (process_batch,
batch)
for batch in batches]
results = [f.result () for f in
futures]
return [item for sublist in results for

item in sublist]

Listing 1. Parallel batch execution using SignallntelligenceSystem

Critical design decisions include: (1) deterministic seed
offsets to ensure repeatability, (2) batch sizing to minimize
thread scheduling overhead, and (3) isolation of worker state
to prevent cross-contamination between parameter evaluations.

x_worker

B. Benchmark Configuration and Metrics

We evaluate performance across a synthetic parameter grid
spanning SNR € [0,20] dB and frequency offset Af €
[0, 4] kHz, consistent with our probabilistic sweeps methodol-
ogy [1]. Each configuration is evaluated using the same logistic
response model from our ghost mode analysis [2].

Key metrics tracked include:

« Wall-clock scaling: Total runtime vs number of workers

o Throughput efficiency: Evaluations per second vs theo-
retical maximum

o Statistical repeatability: Variance in robustness esti-
mates across seeds

o Runtime decomposition: Compute time vs scheduling
overhead

o Memory utilization: Peak memory usage under parallel
execution

C. Repeatability Protocol

To validate that parallel execution does not introduce statis-
tical bias, we implement a strict repeatability protocol:

1) Execute identical parameter grids under both serial and
parallel scheduling

2) Compare robustness boundary
Kolmogorov-Smirnov tests

3) Measure coefficient of variation across 10 independent
seed sequences

4) Validate that ghost mode probability distributions remain
unchanged

estimates using

Any deviation exceeding 1% in boundary location or 0.01
in ghost probability is flagged as statistical drift requiring
investigation.

III. RESULTS

A. Worker Scaling and Throughput

Figure 1 demonstrates near-linear throughput scaling up to
8 workers on our test system (16-core Intel Xeon). Beyond 8
workers, contention for shared resources (particularly mem-
ory bandwidth and I/O) begins to limit scaling efficiency.
The theoretical maximum speedup of 8 is achieved at 7-8
workers, with a practical speedup of 7.2x observed in our
benchmark suite. Table I quantifies these results, showing
that efficiency remains above 90% through 8 workers before
dropping significantly due to resource contention.

TABLE I
THROUGHPUT SCALING PERFORMANCE SUMMARY

Workers Runtime (min) Speedup Efficiency (%)
1 480 1.0x 100
2 250 1.9% 96
4 130 3.7x 92
6 85 5.6 94
8 67 7.2 90
12 72 6.7x 56
16 79 6.1x 38

Throughput Scaling vs Worker Count

100 - Measured
== Theoretical (linear)

Wall-Clock Time (minutes)

Fig. 1. Wall-clock runtime vs number of CPU workers. Near-linear scaling
achieved up to 8 workers (7.2 speedup), after which resource contention
limits gains. Error bars show standard deviation across 5 independent runs.

Batch sizing plays a critical role in achieving optimal
throughput. Batch sizes below 8 configurations suffer from
excessive thread scheduling overhead, while sizes above 32
configurations can lead to memory pressure and reduced
cache efficiency. Our optimal batch size of 16 configurations
represents a balance between these competing factors.

B. Statistical Repeatability

Figure 2 validates that robustness estimates remain statis-
tically identical across serial and parallel execution modes.
Kolmogorov-Smirnov tests confirm no significant difference (p
¢{ 0.95) in boundary location distributions between scheduling
approaches. The coefficient of variation across 10 independent
seed sequences remains below 0.5% for both execution modes,
well within acceptable tolerances for RF benchmarking appli-
cations.

Statistical Repeatability: Serial vs Parallel Execution

o 3 Serial
=3 Parallel
115 £ o

o

||
(S

Robustness Boundary Location (dB)
5
| [|
(R

° e
) o
° o

o
95 &

08 12 18 22 28 32 38 42 48 52 58 62

Random Seed Index

68 7.2 78 82 88 92 98102

Fig. 2. Statistical repeatability across different random seeds. Box plots show
robustness boundary locations for serial (blue) vs parallel (orange) execution
across 10 independent seeds. No significant difference observed (p ¢ 0.95, KS
test).

Ghost mode probability distributions also remain unchanged
under parallel execution, confirming that our scheduling ap-
proach preserves the statistical properties required for eco-
nomic cost analysis [2].

C. Runtime Decomposition Analysis

Figure 3 decomposes total benchmark time into pure com-
putation versus scheduling overhead. With optimal batch siz-
ing (16 configurations), scheduling overhead accounts for
less than 8% of total runtime across all worker counts. This
low overhead enables efficient scaling while maintaining the
deterministic seeding required for reproducible results.

Runtime Decomposition: Compute vs Scheduling Overhead

100 Compute Time
Scheduling Overhead

Runtime (minutes)

40

Fig. 3. Runtime decomposition showing compute time (blue) vs scheduling
overhead (orange) across different worker counts. Optimal batch sizing keeps
overhead below 8% while enabling near-linear scaling. Stack heights represent
total runtime.

Memory utilization scales linearly with worker count, peak-
ing at 2.3 GB for 8 workers processing 128 concurrent config-
urations. This remains well within the memory constraints of
typical benchmarking systems and scales efficiently to larger
parameter grids.

IV. DISCUSSION

Parallel execution accelerates RF benchmarks without alter-
ing statistical outcomes when proper protocols are followed.
Key considerations for successful implementation include:

Deterministic seeding: Each worker must use predictable,
non-overlapping random seed sequences to ensure repro-
ducible results across different hardware configurations and
scheduling orders.

Batch sizing optimization: Balancing thread scheduling
overhead against memory pressure requires careful tuning. Our
empirical optimum of 16 configurations per batch may require
adjustment for different simulation complexities or hardware
architectures.

Explicit drift monitoring: Statistical validation must be
built into the benchmarking workflow to detect subtle biases
that could compromise result validity.

Our scheduling harness integrates seamlessly with both
agentic sweeps [1] and ghost analysis [2], enabling large-
scale RF benchmarking campaigns within operational time
budgets. For example, a 1000-configuration agentic sweep that
previously required 8 hours can now complete in 67 minutes
with 8-worker parallelization.

Integration with traffic-light operational zones: The par-
allel scheduler can prioritize batch processing based on traffic-
light classifications from ghost mode analysis, focusing com-
putational resources on boundary regions where uncertainty

is highest and economic impact is greatest. By scheduling
more aggressively in red/yellow zones, operators can cut
approximately 30% of wasted computational cycles while
concentrating compute power where the cost of ghost hits is
highest, resulting in better resource utilization and faster time-
to-discovery of critical failure modes.

Real-time applications: The threading architecture sup-
ports live RF operations by maintaining separate worker pools
for offline benchmarking and real-time signal processing,
preventing benchmark computations from interfering with
operational latency requirements.

Future work will explore adaptive batch sizing based on
configuration complexity, GPU acceleration for computation-
ally intensive demodulation models, and distributed schedul-
ing across multiple compute nodes for very large parameter
spaces.

V. CONCLUSION

CPU worker scaling and intelligent batch sizing offer
substantial throughput gains (up to 7.2x speedup) without
biasing robustness estimates or ghost mode probability dis-
tributions. Our implementation demonstrates that scheduling-
aware design is critical for fielding reproducible, real-time RF
benchmarking pipelines within operational constraints.

The combination of parallel scheduling with probabilistic
agentic sweeps and economic ghost mode analysis provides a
complete framework for efficient, cost-aware RF demodulation
pipeline characterization. This enables RF engineers to explore
larger parameter spaces, validate more design alternatives,
and deploy more robust systems within fixed development
timelines.

This scheduling harness sets the stage for SLA-bounded
latency studies by ensuring throughput scaling does not bias
latency distribution estimates. Future work in our series will
examine how real-time performance guarantees can be main-
tained under parallel execution while preserving statistical
validity of p50/p99 latency bounds.

REFERENCES

[1] B. J. Gilbert, “Probabilistic agentic sweeps for rf mode recovery,”
Spectrcyde RF Quantum SCYTHE, College of the Mainland, Tech. Rep.
SCYTHE-TR-2025-02, 2025, technical Report. Preprint available as PDF
(Rev2).

, “Ghost modes and the cost of over-recovery in rf demodulation,”

Spectrcyde RF Quantum SCYTHE, College of the Mainland, Tech. Rep.

SCYTHE-TR-2025-01, 2025, technical Report. Published online at https:

//172-234-197-23.ip.linodeusercontent.com/?page_id=14.

(2]

