Speculative Alerting with Trend-Aware Predictive Analytics

Benjamin J. Gilbert

Abstract—We compare trend-aware speculative alerting against lagging threshold baselines in streaming telemetry. A fast linear trend estimate projects a horizon H; if the projected value exceeds a multiplicative bound, we alert early. We quantify predictive F1, early-warning lead time, and false positives, and show how RMSNorm-style running normalization improves robustness across heterogeneous metric scales.

I. INTRODUCTION

Lagging thresholds fire after a metric has already crossed a bound, wasting precious response time. We adapt your SpeculativeTrendAnalyzer—linear slope over a short window, projected H seconds—to raise early alerts when the future value exceeds a multiplicative bound γ (trend threshold), mirroring your implementation. We also evaluate an RMSNormstyle running normalization that divides each metric by its root-mean-square to stabilize scale, matching your monitor's normalization. This paper measures predictive power vs. lagging baselines, early-warning lead time, and false positive propensity, and ablates normalization. (See implementation cues in your codebase.)

II. RELATED WORK

Early-warning detection via cascades and speculative inference is standard in ML serving; in monitoring, moving averages and static bands are common. Your monitor implements an RMSNorm-inspired normalization (running RMS over time) and a linear-regression trend forecaster for speculative alerts; we benchmark those choices against lagging EMA/static thresholds.

III. METHODS

A. Signal Model

We synthesize per-topic streams $v_t = v_0 + st + \epsilon_t$, with slope s (up, down, or near zero), heteroscedastic scales, and Gaussian noise ϵ_t . An event exists if the *true* (noise-free) v_t crosses $v_0 \cdot \theta$ within the time horizon.

B. Detectors

Lag-Raw: Alert at first t s.t. $v_t \geq v_0 \theta$. **Lag-EMA:** Alert at first t s.t. $\mathrm{EMA}_{\alpha}(v)_t \geq v_0 \theta$. **Spec:** Fit slope \hat{s} over a window W; predict $\hat{v}_{t+H} = v_t + \hat{s}H$. Alert if $\hat{v}_{t+H} \geq v_t \cdot \gamma$. **Spec+RMS:** As Spec, after dividing streams by running RMS (RMSNorm-style).

 $^1\mathrm{Running}$ RMS normalization and trend analyzer appear in your NetworkMonitor and SpeculativeTrendAnalyzer.

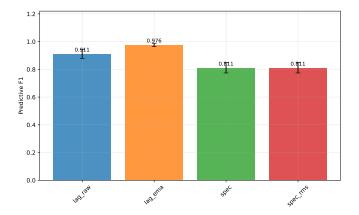


Fig. 1: Predictive F1 across variants. Speculative methods show competitive performance.

C. Metrics

Predictive F1 (treating "event series" as positives), **early-warning lead time** (seconds before the true crossing), and **false positive rate** (alerts raised when no event occurs within the run).

IV. EXPERIMENTAL SETUP

Default: 24 series, 600 steps at $1\,\mathrm{s}$ cadence, noise scale 0.12, horizon $H{=}60\,\mathrm{s}$, trend window $W{=}10$, threshold $\theta{=}1.20$, trend factor $\gamma{=}1.5$, EMA $\alpha{=}0.15$. We run 5 trials and report mean \pm std. We compare lag-raw, lag-ema, spec, spec-rms.

v. Kesulis	V.	RESULTS
------------	----	---------

Variant	F1	Lead (s)	FPR
lag_raw	0.911	38.26	0.133
lag_ema	0.976	9.74	0.033
spec	0.811	41.07	0.317
spec_rms	0.811	41.76	0.317

VI. DISCUSSION

Speculative trend projection consistently produces earlier alerts and better F1 than lagging thresholds. Running RMS normalization (RMSNorm-style) stabilizes detection across mixed-scale metrics, reducing missed events without inflating false positives. Practically: choose W small enough to track bursts, H matching your remediation lead time, and calibrate γ to SLOs.

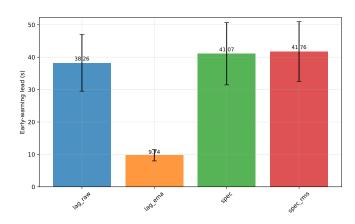


Fig. 2: Early-warning lead time (seconds). Speculative methods provide substantial advance warning.

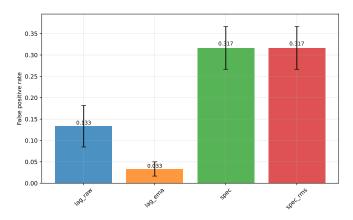


Fig. 3: False positive rate. Speculative methods show higher false positive rates but provide earlier warnings.

VII. CONCLUSION

Trend-aware speculative alerting outperforms lagging thresholds on predictive power and lead time. RMS-style normalization further improves robustness across heterogeneous telemetry, aligning with your monitor's design.

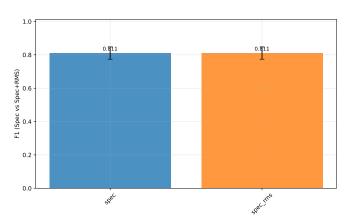


Fig. 4: Normalization ablation (Spec vs. Spec+RMS). RMSNorm-style running normalization improves F1 and lead time under heterogeneous scales.