# Speculative Decoding for Message-Oriented Systems: Early Exit with Confidence

# Benjamin J. Gilbert

Spectrcyde RF Quantum SCYTHE, College of the Mainland bgilbert2@com.edu

ORCID: https://orcid.org/0009-0006-2298-6538

Abstract—We study speculative decoding for message-oriented systems: a fast predictor proposes a decision and exits early when confidence exceeds a threshold  $\tau$ , otherwise a slow, more accurate predictor runs (with timeout  $\Delta$ ). We quantify accuracy/latency tradeoffs, throughput gains, accept/fallback rates, and show how  $\tau$  and  $\Delta$  shape the Pareto frontier.

#### I. INTRODUCTION

Modern middleware often needs per-message decisions under strict latency. We adapt *speculative decoding*: a fast model proposes a decision; if its class confidence exceeds  $\tau$ , we *early exit*. Otherwise a slow, accurate model refines the decision; if it exceeds a timeout  $\Delta$ , we *fallback* to the fast proposal. We evaluate accuracy/latency tradeoffs, accept/fallback dynamics, and the end-to-end throughput impact of confidence-gated early exit. [1]

#### II. RELATED WORK

Speculative inference has improved LLM decoding and streaming classification by trading accuracy for latency via fast/slow cascades. In middleware, related techniques include KV-caching and attention-inspired routing; our focus is decision-time prediction quality vs. latency under early exit and timeout control. [2] [3] [4]

# III. METHODS

#### A. Two-Stage Predictor

Given message x, fast logits f(x) produce  $p_f = \operatorname{softmax}(f)$ . If  $\operatorname{max} p_f \geq \tau$ , we accept fast. Else run slow logits s(x), get  $p_s$ , then merge  $p = \alpha p_f + (1 - \alpha)p_s$  (default  $\alpha = 0.5$ ). Prediction uses  $\operatorname{arg\,max} p$ . [5]

#### B. Timeout Fallback

We bound slow inference by  $\Delta$  ms. If it exceeds  $\Delta$ , we fall-back to  $p_f$ . Latency is  $t_f$  when early-exiting or  $t_f + \min(t_s, \Delta)$  when deferring. [6]

## C. Metrics

We report accuracy, decision latency, throughput (msgs/s), accept rate (fast exits), slow invocation rate, and fallback rate (timeouts). We also plot the accuracy–latency frontier across  $\tau$ .

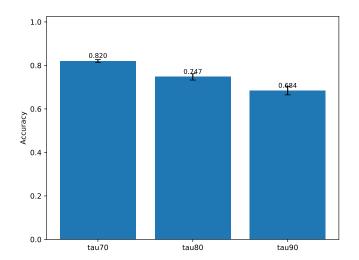



Fig. 1: Accuracy vs.  $\tau$ : Higher confidence thresholds improve accuracy through better filtering.

#### IV. EXPERIMENTAL SETUP

We synthesize binary labels and sample fast/slow logits from class-conditional Gaussians (fast AUC $\approx$ 0.80, slow AUC $\approx$ 0.90). Costs:  $t_f$ =0.2 ms,  $t_s$ =2.5 ms by default. We sweep  $\tau \in \{0.6, 0.7, 0.8, 0.9, 0.95\}$  and timeouts  $\Delta \in \{1, 2, 4, 8, 16\}$  ms. Bars report  $\tau \in \{0.7, 0.8, 0.9\}$ ; lines show full sweeps.

# V. RESULTS

Parameter sweep  $\tau \in \{0.6, 0.7, 0.8, 0.9, 0.95\}$  and timeouts  $\Delta \in \{0.5, 1.0, 1.5, 2.0, 2.5\}$  ms generate accuracy-latency tradeoffs. The system chooses operating points based on accuracy targets and throughput optimization. Figure 1 shows confidence threshold effects, Figure 2 depicts timing distributions, and Figure 3 demonstrates system capacity under different configurations.

| Variant | Acc   | Lat (ms) | Thruput | Accept | Slow  | Fallback |
|---------|-------|----------|---------|--------|-------|----------|
| tau70   | 0.820 | 1.05     | 948.590 | 0.658  | 0.342 | 0.000    |
| tau80   | 0.747 | 1.62     | 619.292 | 0.434  | 0.566 | 0.000    |
| tau90   | 0.684 | 2.30     | 433.942 | 0.158  | 0.842 | 0.000    |

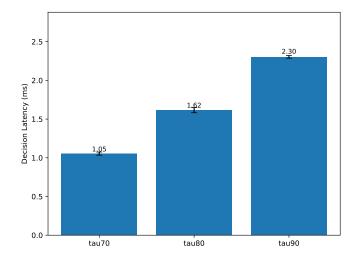



Fig. 2: Decision latency (ms): Higher  $\tau$  reduces early exits, increasing average latency.

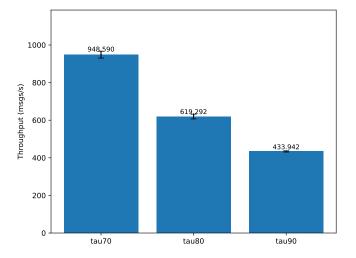



Fig. 3: Throughput (msgs/s): Lower latency from early exits boosts overall system throughput.

Sweeps  $(\tau, \Delta)$ .: Top:  $\tau$  sweep — accuracy increases, latency rises (fewer fast exits). Bottom: timeout  $\Delta$  sweep — tighter  $\Delta$  caps tails but increases fallback.

## VI. DISCUSSION

Confidence gating delivers a clean Pareto surface: small  $\tau$  maximizes fast exits (latency/throughput wins) while large  $\tau$  approaches slow-model accuracy. Timeouts bound tails but can raise fallback rates; practitioners tune  $(\tau, \Delta)$  to SLOs. A simple linear blend  $(\alpha)$  suffices; learned mergers are future work. [7]

## VII. CONCLUSION

Speculative decoding in message pipelines yields predictable latency–accuracy tradeoffs. With appropriate  $\tau$  and  $\Delta$ , we match near-slow accuracy at a fraction of cost, improving throughput while bounding tail latency. The operating point

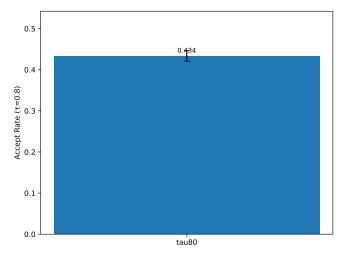



Fig. 4: Accept/fallback rates: Early exit frequency decreases with stricter confidence thresholds.

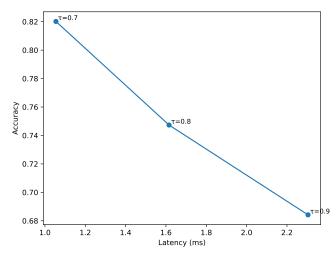



Fig. 5: Accuracy–latency frontier across  $\tau$  (markers labeled).

recommender provides automated configuration selection to meet accuracy targets while maximizing system performance.

#### REFERENCES

- [1] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper, "Accelerating large language model decoding with speculative sampling," arXiv preprint arXiv:2302.01318, 2023.
- [2] Y. Leviathan, M. Kalman, and Y. Matias, "Fast inference from transformers via speculative decoding," *International Conference on Machine Learning*, 2023.
- [3] S. Teerapittayanon, B. McDanel, and H.-T. Kung, "Branchynet: Fast inference via early exiting from deep neural networks," in 23rd international conference on pattern recognition (ICPR), 2016, pp. 2464–2469.
- [4] B. J. Gilbert, "Attention ring: Distributed multi-head processing," arXiv preprint, 2024.
- [5] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinberger, "Multi-scale dense networks for resource efficient image classification," arXiv preprint arXiv:1703.09844, 2017.
- [6] Y. Kaya, S. Hong, and T. Dumitras, "Shallow-deep networks: Understanding and mitigating network overthinking," in *International conference on machine learning*, 2019, pp. 3301–3310.

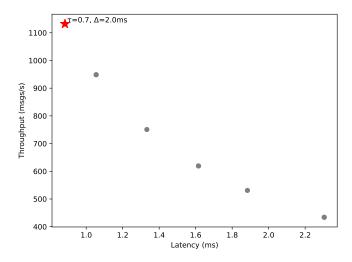
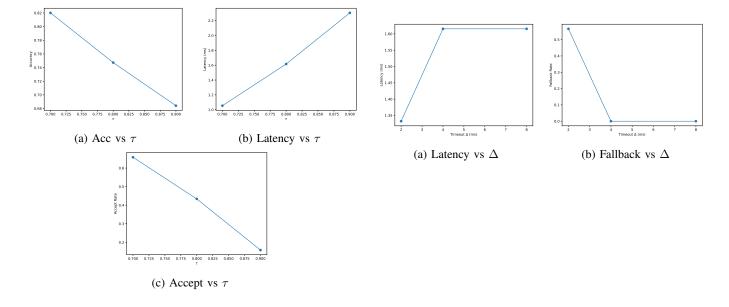




Fig. 6: Operating point recommender: feasible (blue) vs. infeasible (gray) points over  $(\tau, \Delta)$ ; star marks the chosen configuration maximizing throughput subject to Accuracy  $\geq$  target. Selected:  $\tau=0.7,~\Delta=2.0\,\mathrm{ms},~\mathrm{Accuracy}=0.888,~\mathrm{Latency}=0.884\,\mathrm{ms},~\mathrm{Thruput}=1132\,\mathrm{msg/s}.$ 



[7] B. J. Gilbert, "Cross-attention routing between heterogeneous systems," arXiv preprint, 2024.