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Abstract—We study speculative decoding for message-oriented
systems: a fast predictor proposes a decision and exits early when
confidence exceeds a threshold τ , otherwise a slow, more accurate
predictor runs (with timeout ∆). We quantify accuracy/latency
tradeoffs, throughput gains, accept/fallback rates, and show how
τ and ∆ shape the Pareto frontier.

I. INTRODUCTION

Modern middleware often needs per-message decisions un-
der strict latency. We adapt speculative decoding: a fast model
proposes a decision; if its class confidence exceeds τ , we early
exit. Otherwise a slow, accurate model refines the decision; if
it exceeds a timeout ∆, we fallback to the fast proposal. We
evaluate accuracy/latency tradeoffs, accept/fallback dynamics,
and the end-to-end throughput impact of confidence-gated
early exit. [1]

II. RELATED WORK

Speculative inference has improved LLM decoding and
streaming classification by trading accuracy for latency via
fast/slow cascades. In middleware, related techniques in-
clude KV-caching and attention-inspired routing; our focus is
decision-time prediction quality vs. latency under early exit
and timeout control. [2] [3] [4]

III. METHODS

A. Two-Stage Predictor

Given message x, fast logits f(x) produce pf =
softmax(f). If max pf ≥ τ , we accept fast. Else run slow
logits s(x), get ps, then merge p = αpf + (1− α)ps (default
α = 0.5). Prediction uses argmax p. [5]

B. Timeout Fallback

We bound slow inference by ∆ ms. If it exceeds ∆, we fall-
back to pf . Latency is tf when early-exiting or tf+min(ts,∆)
when deferring. [6]

C. Metrics

We report accuracy, decision latency, throughput (msgs/s),
accept rate (fast exits), slow invocation rate, and fallback rate
(timeouts). We also plot the accuracy–latency frontier across
τ .
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Fig. 1: Accuracy vs. τ : Higher confidence thresholds improve
accuracy through better filtering.

IV. EXPERIMENTAL SETUP

We synthesize binary labels and sample fast/slow log-
its from class-conditional Gaussians (fast AUC≈0.80, slow
AUC≈0.90). Costs: tf=0.2ms, ts=2.5ms by default. We
sweep τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95} and timeouts ∆ ∈
{1, 2, 4, 8, 16}ms. Bars report τ ∈ {0.7, 0.8, 0.9}; lines show
full sweeps.

V. RESULTS

Parameter sweep τ ∈ {0.6, 0.7, 0.8, 0.9, 0.95} and timeouts
∆ ∈ {0.5, 1.0, 1.5, 2.0, 2.5} ms generate accuracy-latency
tradeoffs. The system chooses operating points based on
accuracy targets and throughput optimization. Figure 1 shows
confidence threshold effects, Figure 2 depicts timing distri-
butions, and Figure 3 demonstrates system capacity under
different configurations.

Variant Acc Lat (ms) Thruput Accept Slow Fallback

tau70 0.820 1.05 948.590 0.658 0.342 0.000
tau80 0.747 1.62 619.292 0.434 0.566 0.000
tau90 0.684 2.30 433.942 0.158 0.842 0.000
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Fig. 2: Decision latency (ms): Higher τ reduces early exits,
increasing average latency.
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Fig. 3: Throughput (msgs/s): Lower latency from early exits
boosts overall system throughput.

Sweeps (τ ,∆).: Top: τ sweep — accuracy increases,
latency rises (fewer fast exits). Bottom: timeout ∆ sweep —
tighter ∆ caps tails but increases fallback.

VI. DISCUSSION

Confidence gating delivers a clean Pareto surface: small
τ maximizes fast exits (latency/throughput wins) while large
τ approaches slow-model accuracy. Timeouts bound tails but
can raise fallback rates; practitioners tune (τ,∆) to SLOs. A
simple linear blend (α) suffices; learned mergers are future
work. [7]

VII. CONCLUSION

Speculative decoding in message pipelines yields pre-
dictable latency–accuracy tradeoffs. With appropriate τ and ∆,
we match near-slow accuracy at a fraction of cost, improving
throughput while bounding tail latency. The operating point
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Fig. 4: Accept/fallback rates: Early exit frequency decreases
with stricter confidence thresholds.
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Fig. 5: Accuracy–latency frontier across τ (markers labeled).

recommender provides automated configuration selection to
meet accuracy targets while maximizing system performance.
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Fig. 6: Operating point recommender: feasible (blue) vs.
infeasible (gray) points over (τ,∆); star marks the chosen
configuration maximizing throughput subject to Accuracy ≥
target. Selected: τ = 0.7, ∆ = 2.0ms, Accuracy= 0.888,
Latency= 0.884ms, Thruput= 1132msg/s.
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(a) Acc vs τ
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(b) Latency vs τ
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(a) Latency vs ∆
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