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Abstract—Augmented reality systems that rely on radio-
frequency (RF) sensing must withstand adversarial attacks. An
attacker may jam the channel to block alerts or spoof RF
signatures to trigger false critical alarms. Today’s RF-to-AR
pipelines lack systematic mechanisms to evaluate and harden
against such threats. Inspired by red-team methodologies, we
present a framework for generating adversarial traces and
evaluating spoofing/jamming resilience. We contribute three com-
ponents: (1) adversarial trace generators that inject jammed
and spoofed RF events into standardised traces; (2) detection
algorithms that analyse RF metrics (noise floor, channel variance)
and cryptographic tags to identify attacks; and (3) mitigation
strategies including channel hopping and majority-vote consensus
to maintain situational awareness. Our experiments show that the
proposed defences detect 92% of jamming events and 88% of
spoofed alerts within 100 ms, reducing false critical alerts by
40%. The framework emphasises reproducibility: adversarial
traces, metrics and scripts are packaged in OpenBench-AR
format [1], capturing data, code and process [2].

I. INTRODUCTION

RF-to-AR systems harness wireless signals to localise ob-
jects and overlay alerts on wearable displays. Applications
range from casualty triage to threat detection. However, these
systems assume honest environments. A jammer can disrupt
the wireless channel, causing packet loss and staleness, while
a spoofer can forge RF signatures to simulate nonexistent
casualties or threats. Such attacks could overwhelm users with
false alerts or silence critical warnings.

Jamming and spoofing attacks against wireless systems
have been extensively studied [3]], [4]. Traditional approaches
focus on either reactive protocols [5] or machine-learning-
based detection [6]]. However, most RF-AR research focuses
on latency and throughput, with little attention to adver-
sarial robustness. Our approach differs from existing work
by combining lightweight physical-layer metrics (noise floor,
CSI variance) with cryptographic authentication, specifically
targeting the real-time constraints of AR applications where
detection latency must remain under 100 ms.

The reproducibility crisis in ML and systems research
underscores the need for standardised datasets and transparent
evaluation [1]. Reproducibility must capture the interaction
of data, code and process [2]; adversarial evaluation is no
exception. We propose a red-team framework to systematically
introduce spoofing and jamming into RF traces and to develop
and test mitigation strategies.

Our contributions are:

o We build adversarial trace generators that create jam-
ming and spoofing events by mixing noise and forged
CSI/RSSI patterns into existing RF traces. These traces
serve as benchmarks for security evaluation.

o We implement detection algorithms based on physical-
layer metrics (noise floor elevation, sudden CSI variance)
and cryptographic sequence numbers. A classifier flags
anomalies exceeding thresholds and triggers mitigations.

o We design mitigation strategies combining channel hop-
ping, redundancy (majority vote across channels) and
cryptographic authentication of alert messages. The AR
client delays or drops alerts deemed untrustworthy until
consensus is achieved.

o We provide OpenBench-AR formatted datasets, metrics
and scripts to reproduce the evaluation, enabling others
to extend the security benchmarks.

II. ADVERSARIAL TRACE GENERATION
A. Jamming Scenarios

We simulate jamming by injecting high-power noise bursts
into the RF traces. Each burst lasts 10 ms and raises the noise
floor by 15dB, obscuring legitimate packets. The attacker
repeats bursts with a Poisson interarrival time (mean 50 ms),
yielding overall packet loss rates of 60-90%. These parameters
follow typical reactive jamming profiles. The trace generator
marks jammed intervals in a separate annotation file.

B. Spoofing Scenarios

Spoofing is realised by inserting synthetic RF events at
random locations with forged identifiers and realistic channel
statistics. A spoofed casualty alert mimics the CSI pattern of a
genuine vital sign sensor but uses an unassigned device ID. We
vary the rate of spoofing (1-5 events per second) and assign
random priority levels to assess false critical alert impact. All
injected events are labelled in the ground truth for evaluation.

C. Advanced Threat Models

While our current evaluation focuses on basic jamming
and spoofing attacks, real adversaries may employ more so-
phisticated strategies. Advanced jammers could vary trans-
mission power levels to evade detection, adapt to frequency-
hopping sequences by monitoring channel switching patterns,
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or employ stealthy reactive jamming that only activates dur-
ing critical communications. Similarly, sophisticated spoofers
might replay legitimate device traces with modified payloads
or coordinate multiple attack nodes to overwhelm consensus
mechanisms. Future work will extend our trace generators
to model these adaptive attacks and evaluate our detection
algorithms against more realistic threat scenarios including
multi-channel coordinated attacks and adversarial machine
learning techniques that attempt to fool our classifiers.

III. DETECTION AND MITIGATION
A. Detection Algorithms

Our detection module computes sliding-window statistics
over RF metrics. For jamming, we calculate the noise floor
(average magnitude of spectral bins without packets) and the
channel busy ratio (fraction of time the channel is sensed
busy). A sudden increase beyond adaptive thresholds triggers
a jamming alarm. For spoofing, we monitor per-device CSI
variance and sequence number gaps; anomalies indicate a
spoofed device.

The lightweight random forest classifier combines six fea-
tures: normalized noise floor, channel busy ratio, CSI variance
per device, maximum sequence number gap, packet inter-
arrival time variance, and signal-to-noise ratio. The classifier is
trained on 2 hours of labelled traces using 100 trees with max-
imum depth of 5 to prevent overfitting. Detection thresholds
are set adaptively using a sliding window of recent predictions;
when the classifier confidence exceeds two standard deviations
above the historical mean, an attack is flagged. This adaptive
approach reduces false positives in varying RF environments
while maintaining sensitivity to attack patterns.

B. Mitigation Strategies

Upon detection, the AR client engages mitigation tactics:

« Channel hopping: switch to a less congested RF channel
from a precomputed hopping sequence. This reduces
exposure to narrowband jammers. Channel selection must
comply with regulatory constraints (e.g., ISM bands, duty
cycle limits) and coordinate with network infrastructure
to maintain connectivity.

o Majority vote: duplicate alert packets across three chan-
nels and require at least two consistent copies before
rendering an overlay. This counters spoofing and single-
channel jamming.

o Cryptographic tags: append a message authentication
code (MAC) computed using a shared key between
sensor and AR client. We use HMAC-SHA256 with 128-
bit keys, adding 32 bytes per packet. Key management
requires secure bootstrapping and periodic rotation; in
our prototype, devices use pre-shared keys with manual
updates every 24 hours. Packets with invalid MACs are
dropped.

These strategies trade latency and bandwidth for security. The
MAC overhead reduces effective throughput by 8-12% for
typical 200 byte packets, while majority voting triples channel
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Fig. 1. ROC curves for jamming and spoofing detection. High AUC values
indicate effective detection of adversarial events.

usage. We measure the impact on alert timeliness and false
critical alerts to quantify these trade-offs.

IV. EVALUATION

We apply our red-team evaluation to the Glass UX pipeline
using the OpenBench-AR framework. We generate traces
with 80% jamming loss and 3 spoofing events per second
and measure detection rate, false positive rate and mitigation
impact. Experiments run on an NVIDIA Jetson and Pixel 8§,
each for 10 minutes per scenario.

A. Experimental Limitations

Our current evaluation has several limitations that future
work should address. First, experiments are conducted with
only two device types in a controlled indoor environment.
Real deployments will encounter diverse hardware platforms,
outdoor conditions with multipath fading, and interference
from other wireless systems. Second, our 10 minute evaluation
windows provide initial validation but longer studies are
needed to assess performance variations and collect sufficient
data for confidence intervals. Third, we focus on technical
metrics (detection rates, latency) but do not measure the impact
on users’ situational awareness during attacks, which requires
human-subjects studies. Future work will expand to multi-
site deployments, diverse radio conditions, and user-experience
evaluations.

B. Detection Performance

Figure [I] shows receiver operating characteristic (ROC)
curves for jamming and spoofing detection. The jamming
detector achieves an area under the curve (AUC) of 0.96 and
detects 92% of jamming intervals at 5% false alarm rate.
The spoofing detector achieves an AUC of 0.93, with 88%
detection at 6% false alarm.

C. Mitigation Impact

Table [l summarises false critical alert rate and alert latency
with and without mitigation. Without defence, jamming and
spoofing drastically increase false critical alerts and delay
alerts. Our mitigation strategies reduce false alerts by 40%
while adding 60 ms median latency due to majority vote and
cryptographic checks. Frame rates remain above 28 fps.



TABLE I
IMPACT OF MITIGATION ON FALSE CRITICAL ALERTS AND ALERT
LATENCY. RESULTS ARE AVERAGED OVER BOTH DEVICES.

Scenario False critical alerts (%) Median latency (ms)
No attack 5 30
Jamming (undefended) 18 45
Spoofing (undefended) 22 40
Jamming + mitigation 10 90
Spoofing + mitigation 12 85

V. DISCUSSION

Our findings show that lightweight physical-layer metrics
and simple cryptographic tags can effectively detect and
mitigate jamming and spoofing in RF-to-AR systems. The de-
tection rates (;88%) and moderate latency overhead (=60 ms)
suggest that security can be improved without sacrificing
situational awareness.

A. Comparison with Existing Approaches

Our approach differs from machine-learning-heavy detec-
tion systems [6]] by emphasizing simplicity and real-time per-
formance. While ML-based detectors can achieve higher accu-
racy in controlled settings, they often require extensive training
data and may not generalize across diverse RF environments.
Our combination of physical-layer metrics with cryptographic
authentication provides a practical balance between detection
capability and computational efficiency suitable for resource-
constrained AR devices.

B. Security Trade-offs and Future Work

The cryptographic MAC approach requires careful key
management and adds packet overhead, but provides strong
authentication guarantees. Channel hopping effectiveness de-
pends on regulatory constraints and infrastructure support;
future work should explore cognitive radio techniques for dy-
namic spectrum access. The majority voting strategy assumes
independent channel failures, which may not hold against
sophisticated multi-channel attackers.

The adversarial trace generators and OpenBench-AR in-
tegration make it possible to reproduce these results and
to evaluate new defence strategies. The framework could
be extended to model more sophisticated attacks including
reactive jammers that adapt to channel hopping and spoofers
that replay legitimate traces. Future work will explore adaptive
detection thresholds, distributed consensus mechanisms across
multiple AR devices, and field trials in realistic deployment
scenarios.

VI. CONCLUSION

We presented a red-team framework for evaluating and
hardening RF-driven AR alerts against jamming and spoof-
ing attacks. By generating adversarial traces, implementing
detection algorithms and mitigation strategies, and packaging
everything in a reproducible artifact, we enable rigorous se-
curity testing of AR pipelines. Our results demonstrate high
detection rates and substantial reductions in false critical alerts

with modest latency overhead. We hope this work will inspire
further research on adversarial robustness in wearable AR
systems.
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