
Toward Real-Time SLAs: Bounding p50/p99
Latency Under SNR Regimes

Benjamin J. Gilbert
Spectrcyde RF Quantum SCYTHE, College of the Mainland

Email: bgilbert2@com.edu

Abstract—Operational RF systems require quantifiable la-
tency guarantees. We derive SLA envelopes—p50/p99 latency
bounds—as functions of operating conditions (e.g., SNR, ∆f ,
Q), estimated via active sampling over a drift-free parallel
scheduler. Building on agentic boundary discovery [?], cost-aware
ghost analysis [?], and throughput scaling without drift [?],
we (i) produce percentile latency bands, (ii) render SLA pass/-
fail heatmaps, and (iii) characterize time-to-alert distributions
(event→encode→publish→render). These artifacts map directly
to deployable SLA contracts.

I. INTRODUCTION

Latency dictates mission value: timely alerts beat perfect
but late ones. Yet latency is a distribution, not a scalar.
We therefore estimate the conditional quantiles Q0.50(x) and
Q0.99(x) under operating conditions x = (SNR,∆f,Q, . . .),
and declare SLA envelopes with clear pass/fail rules. Our
contributions:

• A measurement harness in core.py that timestamps the
full pipeline.

• Active sampling that targets high-variance, high-cost re-
gions identified by [?], [?].

• Quantile surfaces and SLA heatmaps suitable for con-
tracts and acceptance tests.

II. METHODS

A. End-to-End Timing Hooks in core.py

We instrument the SignalIntelligence pipeline at four points:
event (sample ready), encode (FFT/features), publish (broker
out), render (UI/consumer). Time-to-alert (TTA) is TTA =
trender − tevent.

1 import time, numpy as np
2 from core import SignalIntelligenceSystem
3

4 sis = SignalIntelligenceSystem(config={},
5 comm_network=type("N",(),{"publish":lambda

*a,**k:None})())
6

7 def measure_tta(iq, meta):
8 t0 = time.time() # event
9 feats =

sis.signal_processor.process_iq_data(iq)
encode

10 t1 = time.time()
11 sig = sis.process_signal({**meta,

"iq_data": iq,

12 "timestamp":
t1}) #
classify +
publish

13 t2 = time.time()
14 # if downstream consumer renders, record

t3;
15 # else treat t2 as render proxy
16 t3 = t2
17 return {"tta": t3 - t0, "encode_ms":

1e3*(t1-t0),
18 "proc_ms": 1e3*(t2-t1)}
19

20 def quantiles(ttas):
21 arr = np.asarray(ttas)
22 return np.percentile(arr, [50, 90, 95,

99]).tolist()

Listing 1. Minimal timing wrapper for p50/p99 estimation

B. Active Quantile Estimation
We seek conditional quantiles Qτ (x) with τ ∈ {0.50, 0.99}.

We fit either (i) a quantile GP via pinball loss, or (ii) a
monotone quantile regressor on top of a GP mean/variance
prior. Acquisition prioritizes high-uncertainty, high-cost cells:

a(x) = λ1 ÎQR(x) + λ2 ⊮{Q0.99(x) ≈ L⋆},

where L⋆ is the SLA cap (e.g., 150ms), and ÎQR is an
uncertainty proxy from batched re-measurements.

C. SLA Definition and Pass/Fail
Given targets (L50, L99), we declare pass at x if Q0.50(x) ≤

L50 and Q0.99(x) ≤ L99. We also expose a risk buffer

∆(x) = max{0, Q0.50(x)− L50, Q0.99(x)− L99}.

Cells with ∆(x) = 0 are SLA-compliant.

D. Experimental Design
We adopt the same parameter ranges as [?] and the drift-

free batch scheduler from [?]. At each x we record n repeated
TTAs (typically n ∈ [10, 30]) to stabilize quantiles and
estimate IQR. Ghost-heavy cells from [?] are sampled more
densely due to higher operational cost.

III. RESULTS

A. Percentile Latency Bands
Figure 1 shows p50/p99 bands vs SNR for representative

(∆f,Q). The p99 knee often occurs before p50 improves,
revealing tail sensitivity to operating conditions.

Fig. 1. Percentile latency bands vs SNR. Solid: p50; dashed: p99; shaded:
IQR.

Fig. 2. SLA pass/fail heatmap at fixed Q. Green: pass, Yellow: marginal,
Red: fail.

B. SLA Pass/Fail Heatmaps

Figure 2 renders SLA compliance over (SNR,∆f) slices
for fixed Q. Green cells satisfy (L50, L99), yellow cells violate
one bound marginally, red violate both.

C. Time-to-Alert Distributions

Figure 3 shows TTA histograms decomposed into encode
and process components. Encode dominates at low SNR;
process dominates near failure rims.

IV. DISCUSSION

Where to sample. Active quantile estimation naturally tar-
gets edges where p99 approaches L⋆. What it costs. Aligning
with [?], higher ghost risk correlates with heavier latency
tails due to additional classifier arbitration and downstream
fan-out. How to run fast without bias. Our scheduler [?]
preserves quantiles across worker counts—critical when SLA
certification must be reproducible across labs.

Fig. 3. Time-to-alert (TTA) distributions and stage decomposition (encode vs
process).

A. Contract-Ready Envelopes

For integrators, publish (L50, L99) as functions of SNR
bands, with a buffer ϵ:

E = {x | Q0.50(x) ≤ L50 − ϵ, Q0.99(x) ≤ L99 − ϵ }.

This yields conservative, auditable SLAs robust to day-to-day
variation.

V. CONCLUSION

SLA envelopes turn latency distributions into actionable
guarantees. By combining agentic sampling, ghost-aware pri-
oritization, and drift-free scheduling, we bound p50/p99 across
operating regimes and render pass/fail maps that are ready for
contracts and acceptance tests. Next in the series, we compress
these envelopes into minimal-data validation regimes that
certify systems in about an hour.

REFERENCES

[1] B. J. Gilbert, “Probabilistic sweeps for adaptive rf boundary discovery,”
IEEE Transactions on Signal Processing, 2025, in preparation.

[2] ——, “Ghost modes in rf signal intelligence: Detection, cost analysis,
and mitigation,” IEEE Signal Processing Letters, 2025, in preparation.

[3] ——, “Scheduling without drift: Parallel rf processing at scale,” IEEE
Transactions on Parallel and Distributed Systems, 2025, in preparation.

