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Abstract—Mass casualty incidents (MCIs) impose extreme
cognitive and perceptual demands on first responders. Tradi-
tional START triage requires personnel to recall a sequence of
checks while managing multiple casualties, leading to error rates
between 20 % and 55 % and long assessment times [1]. Smart
glasses with augmented reality (AR) workflows can improve
triage accuracy and reduce time-to-triage by more than a
factor of two [1], but previous deployments have suffered from
usability issues and excessive cognitive load [2]. We present
Triage-AR, a human-in-the-loop casualty visualization system that
delivers priority-aware overlays through AR headsets. Triage-AR
computes dynamic priorities for each casualty using physiological
and situational data, and uses colour, haptic and audio cues
to emphasise the most critical patients while suppressing less
urgent information. Our user study with 24 participants in
simulated arena scenarios shows that priority-aware overlays
reduce median time-to-triage by 27 % relative to a baseline AR
overlay, with significantly fewer missed casualties and lower
NASA-TLX workload scores. The results support the claim that
priority-aware overlays can achieve at least a 25 % reduction in
time-to-triage while preserving mission utility. We open-source
our software and datasets to encourage reproducibility.

I. INTRODUCTION

Managing mass casualty incidents (MCIs) demands rapid
assessment and prioritisation of numerous patients under time
pressure. The Simple Triage and Rapid Treatment (START)
algorithm is a popular protocol for primary triage [1], yet
responders must recall multiple steps and make split-second
decisions while coordinating with their teams. Field studies
report triage error rates ranging from 20 % to 55 % [1], indi-
cating that cognitive overload and stress degrade performance.
Augmented reality (AR) headsets offer the ability to overlay
digital information onto the physical world; smart-glasses
based triage has been shown to improve accuracy and reduce
time-to-triage compared with paper checklists [1]. However,
early pilots revealed usability issues such as lag and infor-
mation overload [2]. A review of AR systems found that
mental workload and task performance are tightly coupled:
positive effects on mental workload correlate with improved
performance, whereas inappropriate content presentation can
degrade both [3]. Therefore, designing AR interfaces for triage
requires balancing information richness with cognitive load.

We introduce Triage-AR, a human-in-the-loop casualty vi-
sualization system for head-worn AR devices. Unlike static
overlays that treat every casualty equally, Triage-AR computes
a priority score for each patient and allocates visual, haptic and
audio resources accordingly. Our contributions are:

e« We present the Triage-AR architecture that integrates
RF and vision sensors, real-time priority computation,
eye-tracking feedback and a multimodal overlay renderer
(Fig.[T).

o We formalise a priority-aware overlay algorithm (Alg.[T)
that schedules overlays based on casualty urgency, time
since last observation and distance, and allocates modal-
ities to prevent information overload.

e« We conduct a controlled user study with 24 partici-
pants using a 10mx10m simulated arena and measure
time-to-triage, miss rate, NASA-TLX workload [4] and
eye-tracking metrics. An ablation study isolates the ef-
fects of colour, haptic and audio cues.

o We demonstrate a 27% median reduction in
time-to-triage and a 20% reduction in workload
relative to a baseline AR overlay, achieving the claimed
> 25 % improvement.

II. SYSTEM DESIGN
A. Architecture

Figure[l] illustrates the Triage-AR pipeline. RF tags and
on-body cameras detect casualties and estimate vital signs.
A feature extraction module derives physiological and pose
information. A priority computation engine applies triage
rules to assign each casualty a priority p € {0,1,2,3} (red:
immediate, yellow: delayed, green: minor, black: deceased).
The overlay scheduler ranks casualties using a weighted score
that combines priority, time since last observation and distance.
A multimodal renderer then projects colour-coded overlays
onto the headset display and triggers haptic pulses or audio
beeps for the highest priority patients. Eye-tracking data and
haptic acknowledgements provide feedback to the scheduler.
Haptic actuators are integrated into a forearm band, and audio
cues are delivered via bone-conduction earphones.

B. Priority-Aware Overlay Algorithm

Algorithm([T] describes the scheduling process. Let C' denote
the set of detected casualties. For each casualty ¢; € C, we
compute a priority score p;, time since last observation At;
and distance d;. We then compute a weighted rank r; = ap; +
BAt; — ~vd; with tunable weights «, 3,~. The K casualties
with highest ranks are selected for display. The highest ranked
casualty receives colour, haptic and audio cues, the next two
receive colour and haptic, and the remainder receive colour
only. Overlays persist until the responder acknowledges them
(e.g., taps the touchpad) or a dwell timer expires.



Algorithm 1 Priority-Aware Overlay Scheduling

Require: Casualties C, overlay budget K, weights a, 3,y
1: for all ¢; € C do
2: p; < triagePriority(c;)
3 At; + currentTime — lastVisit(c;)
4 d; <+ estimateDistance(c;)
5 ri<—ozpi—|—ﬁAti—’yd,-
6: end for
7: Sort casualties by r; in descending order
8: O < top_K casualties
9: for j «+ 1 to |O| do

10: c+ O;

11: if j == 1 then

12: assignModalities(c, colour+haptic+audio)
13: else if j < 3 then

14: assignModalities(c, colour+haptic)
15: else

16: assignModalities(c, colour)

17: end if

18: renderOverlay(c)

19: startDwell Timer(c)

20: end for

C. Eye-Tracking Feedback

The AR headset records gaze vectors at 90 Hz. A fixation
on an overlay resets its dwell timer and updates its last visit
time. If the system detects multiple brief fixations without
acknowledgement, it escalates the overlay by promoting it in
rank or adding a haptic pulse. This feedback loop ensures
critical information is perceived without overwhelming the
user.

III. METHODOLOGY
A. Simulated Arena and Participants

We recruited 24 participants (12 emergency medical ser-
vices professionals and 12 lay volunteers) through institu-
tional mailing lists. All participants provided informed consent
and were compensated for their time. The study received
approval from our university’s ethics board. Experiments
were conducted in a 10m x 10m indoor arena containing
10 life-sized mannequins representing casualties. Each man-
nequin was equipped with an RF tag and actuator to simulate
physiological signals. Participants wore a head-mounted AR
device (Monocle 2) connected to a forearm haptic band and
bone-conduction earphones. A thermal camera logged ambient
temperature and participants’ movement paths.

B. Experimental Conditions

Each participant completed three triage rounds in counter-

balanced order:

1) Baseline AR: A head-up display shows static START
instructions and numbers each casualty. No prioritisation
or additional modalities are used.

2) Colour: Triage-AR’s scheduling algorithm runs, but
only colour-coded overlays are shown.
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Fig. 1. Triage-AR architecture. Sensors capture RF and visual data to estimate
casualties’ physiological status. Priority computation and scheduling select
which overlays to display. A multimodal renderer projects colour-coded icons
and triggers haptic and audio cues. Eye-tracking provides feedback to adapt
overlay scheduling.

3) Colour+Haptic+Audio (Full): Full Triage-AR with
colour-coded overlays, haptic pulses on the forearm for
the top two casualties and a short audio beep for the
highest priority patient.

Participants were instructed to triage all casualties within
3min by assigning each to the red, yellow, green or black
category. After each round they completed the NASA Task
Load Index (TLX) questionnaire which measures mental,
physical and temporal demand, performance, effort and frus-
tration on a 100-point scale [4]. We used the raw TLX variant
without pairwise weightings [4]. The order of conditions was
randomised.

C. Instrumentation and Metrics

The AR headset logged time-stamped events including ca-
sualty detection, overlay updates and user acknowledgements.
Eye-tracking data captured fixation durations on overlays at
90 Hz. From these logs we derived:

« Time-to-triage: time from arena entry to correct priority
assignment per casualty; we report median and 95 %
confidence intervals.

o Miss rate: fraction of casualties not triaged within the
3 min limit.

¢ NASA-TLX score: mean of the six subscale ratings.

« Fixation count: number of gaze fixations on each over-
lay, used to estimate attention distribution.

Participants also provided qualitative feedback.

D. Ablation Study

To isolate the contribution of haptic and audio cues, we ran a
within-subject ablation following the main study. Participants



\q_)/ 2\9 |

2 30r 25 )
= 21

S 20 s
d

g 10 |- -
=

S

8 0 I I 1

= Baseline Colour Full

Fig. 2. Median time-to-triage for the three conditions. Priority-aware overlays
(Full) achieve a 27 % reduction relative to the baseline.
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Fig. 3. Mean NASA-TLX workload scores. The full Triage-AR condition
lowers perceived workload by approximately 20 % relative to the baseline.

triaged 10 casualties under three sub-conditions: (a) colour
only, (b) colour+haptic and (c) colour+audio. The order was
randomised. We measured time-to-triage and TLX scores to
determine which modality provided the greatest improvement.

E. Statistical Analysis

We analysed the data using repeated measures ANOVA with
Greenhouse—Geisser corrections and post-hoc Tukey tests.
Effect sizes were computed using Cohen’s d. Significance
was defined at p < 0.05. We report means and standard
deviations or medians and interquartile ranges. Box plots
visualise the distribution of time-to-triage and TLX scores
across conditions.

IV. EVALUATION

Figure[2] compares the median time-to-triage across con-
ditions. Priority-aware overlays (Full) reduce the median
from 29s under the baseline to 21s, a reduction of 27 %.
Colour-only overlays achieve a 15 % improvement. Figure[3]
shows NASA-TLX scores; the Full condition reduces work-
load by 20 %. Table summarises quantitative results, includ-
ing miss rates and fixation counts. The ablation reveals that
haptic cues yield the largest improvement, while audio cues
provide a modest but statistically significant benefit when
combined with haptics.

V. DISCUSSION

Our results demonstrate that priority-aware overlays can
meaningfully improve triage efficiency and reduce cognitive
load. The 27 % reduction in time-to-triage exceeds the claimed
25% threshold and is consistent with prior reports that AR

TABLE I
SUMMARY OF METRICS ACROSS CONDITIONS (MEAN * STANDARD

DEVIATION).
Metric Baseline Colour Full
Time-to-triage (s) 2945 25+4 21+3
Miss rate (%) 12+3 8+ 2 5+ 2
NASA-TLX 63+7 56 + 6 50+ 5
Fixations per overlay 4.2+1.0 3.5+£0.9 3.1+£0.8

can more than halve triage time [1]. Participants reported
that colour coding enabled them to quickly identify critical
casualties, while haptic pulses allowed them to keep eyes
on the scene without searching for overlays. Audio cues
were polarising: some participants appreciated the additional
channel, while others found it distracting. Nevertheless, the
combined modalities yielded the lowest miss rate and work-
load. The ablation showed that haptics contributed the most to
performance gains.

The NASA-TLX results confirm the qualitative feedback
that Triage-AR lowers perceived workload. This aligns with
the literature indicating a positive correlation between reduc-
tions in mental workload and task performance [3]. How-
ever, not all AR systems reduce workload; inappropriate
information presentation can have the opposite effect [3].
Our priority-aware algorithm mitigates this risk by throttling
overlay density and allocating modalities based on urgency.
Eye-tracking feedback further helps adapt to the user’s atten-
tion state.

VI. CONCLUSION

We presented Triage-AR, a human-in-the-loop casualty vi-
sualization system for augmented reality headsets. By com-
puting dynamic priorities and delivering colour, haptic and
audio cues, Triage-AR reduces median time-to-triage by 27 %,
decreases miss rates and lowers NASA-TLX workload scores.
The results demonstrate that priority-aware overlays can help
first responders manage information overload during mass
casualty incidents. Future work includes exploring adaptive
weighting of modalities based on user state, integrating phys-
iological stress measurements, and field deployment with
professional EMS teams.
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