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Abstract—We present Voice Clone Guard, a few-shot voice
deepfake detector that combines XLS-R embeddings with Gaus-
sian Process (GP) classification for superior detection accu-
racy and probability calibration. Qur approach leverages self-
supervised speech representations from Wav2Vec2-XLS-R and
employs GP inference to provide well-calibrated uncertainty
estimates. Evaluation across synthetic and real-world datasets
demonstrates significant improvements: 95.6% AUC (vs 78.2%
MFCC baseline), 4.2% Equal Error Rate (vs 18.5%), and
substantially better calibration with Expected Calibration Error
of 0.032 (vs 0.127). The method excels in few-shot scenarios,
achieving 85.2% accuracy with only 4 examples per class, making
it practical for deployment with limited training data.

Index Terms—Voice deepfake detection, few-shot learning,
XLS-R embeddings, Gaussian processes, probability calibration,
speech forensics

I. INTRODUCTION

The rapid advancement of voice cloning technology poses
significant challenges for audio authentication and security.
State-of-the-art neural vocoders and text-to-speech systems
can generate highly realistic synthetic speech that is increas-
ingly difficult to distinguish from authentic recordings [17].
This proliferation of voice deepfakes threatens applications
ranging from financial fraud prevention to legal evidence
verification.

Traditional voice authentication systems rely on spectral
features like Mel-frequency cepstral coefficients (MFCCs)
combined with simple threshold-based classification [18].
While computationally efficient, these approaches suffer from
poor generalization to unseen attack vectors and lack reli-
able confidence estimates. Recent advances in self-supervised
speech representation learning, particularly Wav2Vec?2 and its
multilingual variant XLS-R [?], [?], offer new opportunities
for robust deepfake detection.

However, most existing deep learning approaches for voice
authentication require large labeled datasets and fail to provide
well-calibrated probability estimates—critical for operational
deployment where false alarms carry significant costs. Few-
shot learning scenarios, where only a handful of examples are
available for each speaker or attack type, remain particularly
challenging.

Our Contributions:

o Few-Shot Architecture: Integration of XLS-R embed-
dings with GP classification for data-efficient deepfake
detection

o Calibrated Uncertainty: GP inference provides well-
calibrated probability estimates (ECE = 0.032 vs 0.127
for baselines)

o Superior Performance: 95.6% AUC and 4.2% EER,
significantly outperforming spectral feature baselines

« Practical Implementation: Open-source system achiev-
ing 85.2% accuracy with only 4 training examples per
class

II. METHODOLOGY
A. XLS-R Embedding Extraction

We employ the Wav2Vec2-XLS-R-53 model, a large-scale
self-supervised speech representation learner trained on 53
languages [?]. The model transforms raw audio waveforms
into contextualized embeddings through a convolutional fea-
ture encoder followed by a transformer-based context network.

For computational efficiency and stability, we freeze all
transformer layers except the final encoder block (layer 23),
allowing fine-grained adaptation while preventing overfitting
in few-shot scenarios. Given an input waveform x € RT
sampled at 16kHz, the embedding extraction process is:

z = XLS-R(x) (1)

where z € R1924 represents the mean-pooled final hidden

state across the temporal dimension.

B. Gaussian Process Classification

For few-shot classification, we employ a Gaussian Process
with Radial Basis Function (RBF) kernel. GPs provide several
advantages for deepfake detection: (1) principled uncertainty
quantification through posterior variance, (2) effective perfor-
mance in low-data regimes, and (3) automatic regularization
preventing overfitting.

The GP prior over classification functions is defined as:

f(x) ~ GP(0, k(x,x")) (2)
where the RBF kernel is:

x — x'[|2
k(x,x) = JJ% exp (—”2£2”> 3)



with length scale £ = 1.5 (optimized through validation)

and signal variance o' = 1.0.
For binary classification, we use the Laplace approximation
"

to compute predictive probabilities:
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where p* and o*? are the predictive mean and variance, and
® is the standard normal CDF.
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C. Training Strategy

Our few-shot training protocol uses k € {1,2,4,8,16,32}
examples per class (real/fake). The frozen XLS-R encoder
provides pre-trained representations, while the GP classifier
adapts to the specific task with minimal data. This approach
leverages the rich semantic information captured by self-
supervised pretraining while maintaining computational effi-

ciency.
ITI. EXPERIMENTAL SETUP

A. Datasets and Evaluation Protocol

We evaluate on a comprehensive mixed dataset comprising
12,847 utterances from 427 speakers across 8 languages (En-
glish, Spanish, French, German, Japanese, Mandarin, Arabic,
Russian), totaling 43.2 hours of audio. The dataset includes:
(1) Synthetic samples (6,423 utterances): Generated using
state-of-the-art TTS systems including Tacotron2 + Wave-
Glow, FastSpeech2 + HiFiGAN, and VITS, capturing di-
verse voice cloning architectures; (2) Real speech recordings
(4,891 utterances): Sourced from LibriTTS, Common Voice,
and VoxCeleb2 to ensure speaker diversity and multilin-
gual coverage; (3) Adversarial examples (1,533 utterances):
Generated with noise injection (SNR 10-30dB), resampling
artifacts (8-48kHz), and compression (MP3, AAC at various
bitrates) to test robustness.

The evaluation follows a stratified few-shot protocol with
strict speaker separation between training and testing sets.
Training sets contain k& € {1,2,4,8,16,32} examples per
class (real/fake) from disjoint speakers, while testing uses
held-out utterances from 85 unseen speakers. We report results
averaged across 10 random stratified splits to ensure statisti-
cal significance. Cross-lingual evaluation maintains language
balance across splits.

Validation against Standard Benchmarks: To ensure gen-
eralizability, we report additional results on ASVspoof 2019
LA (Logical Access) and 2021 DF (Deepfake) evaluation sets
in supplementary validation experiments.

Metrics: We assess both discrimination and calibration
performance using:

o Discrimination: ROC-AUC, Equal Error Rate (EER),

precision-recall curves

o Calibration: Expected Calibration Error (ECE), Brier

score, reliability diagrams

e Cross-lingual: Per-language AUC and EER to assess

multilingual effectiveness
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Fig. 1. ROC curve comparison showing discrimination performance. XLS-R
+ GP (blue, AUC=95.6%) substantially outperforms MFCC + Cosine (red,
AUC=78.2%) and Spectral + LogReg (green, AUC=83.4%) baselines. Oper-
ating points at 95% specificity show 89% vs 67% sensitivity respectively. The
steeper curve indicates superior performance across all decision thresholds.

B. Baseline Comparisons

We compare against both traditional and modern baselines:
MFCC + Cosine: Traditional MFCC features (13 coef-
ficients + derivatives) with cosine similarity scoring
Spectral + LogReg: Hand-crafted spectral features
(MFCC, chroma, spectral contrast, CQCC) with logistic

regression

Raw Audio + CNN: End-to-end convolutional neural net-
work (RawNet2 architecture) trained on raw waveforms
LCNN Baseline: Light CNN with feature genuinization
following ASVspoof protocols

HuBERT + FineTune: HuBERT-large fine-tuned with
classification head for comparison with SSL approaches

IV. RESULTS

A. Overall Performance

fig. 1 shows ROC curves comparing our XLS-R + GP ap-
proach against baseline methods. Our method achieves 95.6%
AUC, substantially outperforming spectral features + logis-
tic regression (83.4% AUC) and MFCC + cosine similarity
(78.2% AUC).

fig. 2 presents Detection Error Tradeoff (DET) curves,
emphasizing Equal Error Rate performance. Our approach
achieves 4.2% EER compared to 12.8% for spectral features
and 18.5% for MFCC baselines—a 67% relative improvement
over the best baseline.

B. Few-Shot Learning Performance

fig. 3 demonstrates the few-shot learning capabilities across
different numbers of training examples per class. Our XLS-R
+ GP approach shows remarkable data efficiency, achieving
72% accuracy with just 1 example per class and 85.2% with
4 examples—sufficient for practical deployment scenarios.

The performance gap between our method and baselines
increases dramatically in low-shot regimes, highlighting the
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Fig. 2. DET curves showing Equal Error Rate performance with operating
point analysis. Lower curves indicate better performance. XLS-R + GP
achieves 4.2% EER (marked with blue circle) versus 12.8% (green triangle)
and 18.5% (red square) for baseline approaches. The logarithmic scale
emphasizes performance at practical low false alarm rates typical for security
applications.

TABLE 1
PERFORMANCE COMPARISON: DETECTION AND CALIBRATION METRICS

Method AUC EER (%) ECE/|
MFCC + Cosine 0.782 18.5 0.127
Spectral + LogReg 0.834 12.8 0.098
Raw Audio + CNN 0.887 9.7 0.089
LCNN Baseline 0.912 74 0.074
HuBERT + FineTune  0.923 6.8 0.061
XLS-R + GP 0.956 4.2 0.032

value of pretrained representations combined with GP’s ability
to model uncertainty with limited data.

C. Probability Calibration

A critical advantage of our GP-based approach is well-
calibrated probability estimates. fig. 4 shows reliability di-
agrams comparing predicted confidence with empirical ac-
curacy. Our method closely follows the diagonal (perfect
calibration), achieving ECE = 0.032, while MFCC baselines
suffer from severe overconfidence (ECE = 0.127).

D. Ablation Studies

table II presents ablation results examining key design
choices:

GP Length Scale: ¢ = 1.5 provides optimal performance,
balancing model flexibility with generalization. Smaller values
lead to overfitting, while larger values underfit the training
data.

Fine-tuning Strategy: Freezing all layers except the last
achieves the best trade-off between performance and com-
putational efficiency. Full fine-tuning offers marginal AUC
improvement (0.961 vs 0.956) at 8x computational cost, while
freezing all layers reduces performance significantly.
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Fig. 3. Few-shot learning performance across different numbers of training
examples per class with 95% confidence intervals. XLS-R + GP (blue)
demonstrates superior data efficiency, achieving 85.2% accuracy with only
4 examples per class (marked with circle). Error bars show statistical sig-
nificance across 10 random splits. The steep initial slope indicates excellent
sample efficiency crucial for practical deployment scenarios.
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Fig. 4. Reliability diagrams showing probability calibration quality. Left:
XLS-R + GP achieves excellent calibration (ECE = 0.032) with predictions
closely following the perfect calibration diagonal (black dashed line). Bin
sizes are proportional to sample count. Right: MFCC baseline shows severe
overconfidence (ECE = 0.127) with systematic deviation above the diagonal.
Well-calibrated probabilities are essential for threshold setting in security
applications.

E. Cross-Lingual and Robustness Evaluation

The cross-lingual results demonstrate XLS-R’s multilin-
gual capabilities, with consistent performance across lan-
guage families. Performance degradation is minimal for Ro-
mance/Germanic languages but more noticeable for tonal
languages (Japanese/Mandarin) and Semitic/Slavic languages
(Arabic/Russian), suggesting potential for language-specific
adaptation.

Robustness evaluation shows graceful degradation under
realistic deployment conditions. While clean audio achieves
95.6% AUC, the system maintains {91% AUC even under
128kbps MP3 compression—typical of real-world voice com-
munications. Validation on ASVspoof benchmarks confirms
generalizability, though with expected performance drops due
to domain shift from our mixed training data.

V. IMPLEMENTATION DETAILS

Our system is implemented in Python using PyTorch, Trans-
formers, and scikit-learn. The complete pipeline is available
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TABLE 11
ABLATION STUDY: KEY DESIGN CHOICES

Configuration AUC ECE
GP length scale £ = 0.5 0.932  0.045
GP length scale £ = 1.0 0.948  0.038
GP length scale { =1.5 0.956 0.032
GP length scale £ = 2.0 0951 0.034
Freeze all XLS-R layers 0912  0.052
Freeze except last layer  0.956  0.032
Fine-tune all layers 0961  0.029

TABLE III
CROSS-LINGUAL PERFORMANCE AND ROBUSTNESS ANALYSIS

Evaluation Setting AUC EER (%) ECE
Cross-Lingual (Per Language):

English 0.961 3.8 0.029
Spanish/French/German 0.954 4.1 0.032
Japanese/Mandarin 0.948 4.7 0.037
Arabic/Russian 0.943 52 0.041
Adversarial Robustness:

Clean audio 0.956 42 0.032
Gaussian noise (SNR 20dB) 0.932 6.1 0.045
Resampling artifacts 0.925 6.8 0.048
MP3 compression (128kbps) 0.918 7.3 0.052
ASVspoof Validation:

ASVspoof 2019 LA eval 0.889 8.9 0.067
ASVspoof 2021 DF eval 0.902 7.4 0.058

as open-source software and includes:

Listing 1. Core Implementation Structure

class XLSREmbedder:
def _ init_ (self, model_id="facebook/wav2vec2—
large-xlsr-53"):
self.processor = Wav2Vec2Processor.
from_pretrained(model_id)
self.model = Wav2Vec2Model.from_pretrained (
model_id)
self.freeze_except_last ()
def embed(self, waveform, sampling_rate=16000) :
inputs = self.processor (waveform,
sampling_rate=sampling_rate,
return_tensors="pt")
with torch.no_grad() :
outputs = self.model (x*xinputs)
return outputs.last_hidden_state.mean (dim=1)
.squeeze () .numpy ()

class VoiceDeepfakeDetector:
def __init__ (self, length_scale=1.5):
self.kernel = RBF (length_scale=length_scale)
self.model = GaussianProcessClassifier (
kernel=self.kernel)

labels) :
labels)

def train(self, embeddings,
self.model.fit (embeddings,

def predict (self, embedding):
return self.model.predict_proba ([embedding])
[(010[1]

Computational Requirements: Training completes in un-
der 20 seconds on a standard CPU with 16 examples per class.

Inference requires 50ms per audio sample, making real-time
deployment feasible.

Memory Usage: The frozen XLS-R model requires 1.2GB
GPU memory, with minimal additional overhead for GP train-
ing and inference.

VI. RELATED WORK

A. Voice Spoofing Benchmarks and Baselines

The ASVspoof series established standardized corpora and
protocols for synthetic, converted, and replayed speech de-
tection [1], [2]. Classical baselines typically rely on cepstral
or spectral descriptors (e.g., MFCCs, CQCCs) with shallow
classifiers, while modern systems employ convolutional or
attention-based backends—e.g., LCNN, RawNet2/3, and AA-
SIST—which report strong performance under fixed training
regimes [3], [4], [5]. Despite high discrimination, many deep
detectors are trained in data-rich settings and seldom analyze
probability calibration, a gap our work addresses explicitly.

B. Self-Supervised Speech Representations for Detection

Self-supervised learning (SSL) models such as wav2vec 2.0,
HuBERT, WavLM, and XLS-R provide robust, multilingual
representations with strong transfer to non-ASR tasks [6],
[71, [8], [9]. Recent studies show SSL embeddings improve
spoofing detection under domain shifts and low-resource con-
ditions compared to hand-crafted features. We adopt XLS-R
for cross-lingual headroom and demonstrate that pairing SSL
embeddings with a Bayesian classifier yields not only higher
AUC/EER gains but also materially better calibration.

C. Few-Shot Anti-Spoofing and Metric Meta-Learning

Few-shot detection has been explored via metric-learning
(e.g., Prototypical Networks, Matching Networks) and meta-
learning (e.g., MAML) to improve generalization with limited
labels [10], [11], [12]. In voice spoofing, prior work often fine-
tunes SSL encoders with simple heads or employs prototype-
based scoring; however, these approaches can be overconfident
and under-calibrated in truly low-shot regimes. Our design
replaces a learned head with a Gaussian Process classifier over
frozen (or lightly tuned) SSL embeddings, improving both data
efficiency and uncertainty estimates.

D. Gaussian Processes and Uncertainty in Speech

Gaussian Processes (GPs) offer non-parametric Bayesian
inference with principled uncertainty and have a history in
speech and acoustics for regression, classification, and la-
tent variable modeling [13], [14], [15]. In ASR and spo-
ken language modeling, GP-inspired uncertainty has been
leveraged for confidence estimation and calibration; scalable
sparse GP variants address the cubic complexity of exact
inference. We use an RBF-kernel GPC with Laplace inference
as a lightweight head on top of SSL embeddings, striking
a favorable trade-off between sample efficiency, calibration
(ECE/Brier), and runtime.



E. Calibration and Operating-Point Reporting

Calibration has gained attention in vision and speech safety
contexts, with post-hoc methods like temperature scaling
widely used for neural classifiers [16]. In anti-spoofing,
works routinely emphasize discrimination (ROC/EER) but
underreport calibration and operating-point analyses (DET,
reliability diagrams). We report both, showing that XLS-R
+ GP improves detection while producing better-calibrated
probabilities—critical for threshold setting and triage in high-
stakes deployments.

FE. Positioning

Relative to contemporary baselines (LCNN/RawNet/AA-
SIST) and SSL fine-tuning approaches, our contribution is
orthogonal: we focus on few-shot data efficiency and prob-
ability calibration. The combination of multilingual SSL em-
beddings with a GP head yields competitive discrimination
and materially improved calibration without heavy end-to-end
retraining, making it attractive for practical, rapidly evolving
threat landscapes.

VII. ETHICAL CONSIDERATIONS AND LIMITATIONS
A. Responsible Al and Bias

While Voice Clone Guard demonstrates strong cross-lingual
performance, systematic evaluation reveals performance dis-
parities across language families and speaker demographics.
Our analysis shows 1.8% EER degradation for tonal languages
(Japanese/Mandarin) and 2.1% for Semitic/Slavic languages
compared to Germanic/Romance languages, reflecting known
biases in SSL training data. Future work should address
fairness through balanced multilingual training and bias-aware
evaluation protocols.

Gender and age bias analysis shows consistent performance
across demographics within languages, but cross-cultural voice
characteristics may introduce subtle biases requiring dedicated
fairness audits for production deployment.

B. Security and Adversarial Limitations

Our system shows graceful degradation under common
audio artifacts but has not been evaluated against adaptive
adversaries with full knowledge of the detection mechanism.
Potential vulnerabilities include: (1) targeted attacks against
XLS-R representations, (2) adversarial examples crafted to
exploit GP decision boundaries, and (3) model extraction
attacks given the relatively small GP parameter space.

The 1.2GB memory requirement may limit deployment on
edge devices, potentially creating security/accessibility trade-
offs in resource-constrained environments.

C. Dual Use and Societal Impact

Voice deepfake detection technologies serve crucial security
functions but may also enable censorship or suppress legiti-
mate synthetic speech applications (accessibility tools, creative
content). We advocate for transparent deployment policies and
user consent mechanisms.

The open-source implementation facilitates broader research
and reproducibility but may also assist in developing evasion
techniques. We believe the security benefits outweigh these
risks given the current threat landscape.

VIII. CONCLUSION AND FUTURE WORK

We presented Voice Clone Guard, a few-shot voice deep-
fake detection system combining XLS-R embeddings with
Gaussian Process classification. Our approach demonstrates
substantial improvements over traditional baselines and com-
petitive performance with modern deep methods (95.6% AUC,
4.2% EER) while providing excellent probability calibration
(ECE = 0.032). The method excels in few-shot scenarios,
making it practical for deployment with limited training data.

Key advantages include: (1) superior discrimination per-
formance through self-supervised representations, (2) well-
calibrated uncertainty estimates via GP inference, (3) data
efficiency enabling deployment with minimal examples, and
(4) computational efficiency suitable for real-time applications.

Future Directions:

o Multimodal Fusion: Integration with visual lip-sync
analysis for video deepfake detection

o Adaptive Learning: Online adaptation to new attack
vectors using continual learning

o Adversarial Robustness: Evaluation against adaptive
adversaries aware of detection methods

o Deployment Studies: Large-scale evaluation in produc-
tion environments with diverse acoustic conditions

The demonstrated effectiveness of XLS-R + GP provides
a strong foundation for practical voice authentication systems
requiring both high accuracy and reliable confidence estimates.
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