
Hybrid Async Communication Interfaces with
Transformer-Inspired Queues

Benjamin J. Gilbert

Abstract—We study a practical hybrid front door for message-
oriented systems: REST (HTTP/1.1 keep-alive) and WebSocket,
backed by transformer-inspired queues. We compare syn-
chronous FlashQueue against asynchronous FlashQueue (k-way
servers) and a MemoryMappedFlashQueue with hot/cold buffers.
Metrics: mean/p95 latency, throughput, CPU-cost proxy, con-
nection amortization, and cache-hit ratio. Results show that (i)
persistent WebSocket amortizes connection setup and reduces
per-message overhead, (ii) async FlashQueue improves utilization
under load, and (iii) MemoryMappedFlashQueue wins on hit-
heavy workloads.

I. INTRODUCTION

Industrial platforms rarely bet on a single interface: syn-
chronous REST integrates with existing fleets and gate-
ways; WebSocket enables persistent, low-latency bidirectional
streams. We analyze a hybrid front door feeding transformer-
inspired queues: (a) FlashQueue (priority × time decay) in
sync/async modes, and (b) MemoryMappedFlashQueue with a
hot SRAM-like buffer and a cold HBM-like store. We quantify
end-to-end impact and provide concrete integration guidance
(keep-alive, backpressure, retries, TLS termination).

II. RELATED WORK

Async event loops, persistent sockets, and IO-aware data
structures reduce overhead in production systems. Inspired
by memory-hierarchy-aware attention optimizations, we eval-
uate analogous queue designs under realistic interface over-
heads (handshakes, headers, serialization) and concurrency
constraints.

III. METHODS

A. Front Doors

REST: per-connection TCP/TLS handshake amortized over
K messages (keep-alive), plus per-message HTTP overhead.
WebSocket: one handshake per long-lived connection; small
per-message frame overhead.

B. Queues

FlashQueue-sync: single-server dequeue; priority × time-
decay admission. FlashQueue-async: k servers (default k=4)
in parallel. MemMappedFlashQueue: hot buffer with hit
probability phot; hits get a service speedup; misses incur a
cold penalty.

rest_sync
rest_memmap ws_sync

ws_memmap
ws_async

0

20

40

60

80

100

120

M
ea

n
La

te
nc

y
(m

s)

111.94

0.49 0.12 0.09 0.10

Fig. 1: Mean latency (ms): rest sync=, rest memmap=,
ws sync=, ws memmap=, ws async=.

C. Simulator

We generate a Poisson arrival stream at QPS λ. Each mes-
sage picks an interface and enqueues. We maintain a server-
availability heap (size k): start time is max(arrival,min free).
Latency = interface overhead + queue wait + service time;
throughput = N/wall-time. CPU proxy = sum of ser-
vice+parsing time; cache-hit ratio observed for mem-mapped
queue. We report mean and p95 latencies over runs.

IV. EXPERIMENTAL SETUP

Default: N=50k messages, QPS 8k, REST keep-alive
K=20, WebSocket single long-lived connection, hot-hit
phot=0.65, async concurrency k=4. Variants: rest_sync,
rest_memmap, ws_sync, ws_memmap, ws_async. We
also sweep REST K ∈ {1, 5, 10, 20, 50, 100} to visualize
handshake amortization.

V. RESULTS

Variant Lat (ms) p95 (ms) Thruput CPU (ms/msg) Hit

rest sync 111.94 195.64 1983.562 0.204 0.000
rest memmap 0.49 0.56 1998.856 0.189 0.650
ws sync 0.12 0.21 1998.886 0.104 0.000
ws memmap 0.09 0.15 1998.887 0.089 0.651
ws async 0.10 0.14 1998.886 0.099 0.000

rest_sync
rest_memmap ws_sync

ws_memmap
ws_async

0

50

100

150

200

p9
5

La
te

nc
y

(m
s)

195.64

0.56 0.21 0.15 0.14

Fig. 2: p95 latency (ms): rest sync=, rest memmap=,
ws sync=, ws memmap=, ws async=.

rest_sync
rest_memmap ws_sync

ws_memmap
ws_async

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (m

sg
s/

s)

1983.562 1998.856 1998.886 1998.887 1998.886

Fig. 3: Throughput (msgs/s): rest sync=, rest memmap=,
ws sync=, ws memmap=, ws async=.

VI. DISCUSSION

WebSocket reduces per-message overhead via persistent
framing, shifting bottlenecks into queuing. Async FlashQueue
exploits parallel servers to shrink waits; MemoryMapped-
FlashQueue wins when hot-hit rate is high. REST remains
viable at moderate K; poor reuse (small K) hurts tails. For
production: prefer WS for chatty/streaming clients; keep REST
for control paths; ensure backpressure maps to HTTP 429 / WS
close codes; use idempotency keys for retries; terminate TLS
at edge and forward mTLS internally; budget for serialization
and JSON schema checks.

Deployment Notes.:

• Gateway: terminate TLS at the edge (e.g., NGINX),
enforce keep-alive (REST) and idle timeouts (WS), map
backpressure to HTTP 429 or WS close codes.

rest_sync
rest_memmap ws_sync

ws_memmap
ws_async

0.00

0.05

0.10

0.15

0.20

0.25

CP
U

Co
st

 (m
s/

m
sg

)

0.204
0.189

0.104
0.089

0.099

Fig. 4: CPU-cost proxy (ms/msg): rest sync=, rest memmap=,
ws sync=, ws memmap=, ws async=.

0 20 40 60 80 100
Messages per TCP/TLS connection (K)

0

20000

40000

60000

80000

M
ea

n
La

te
nc

y
(m

s)

REST keep-alive
WebSocket (1 conn)

Fig. 5: REST keep-alive amortization: mean latency vs mes-
sages/connection K; WebSocket shown as dashed baseline
(single handshake).

• Retries: use idempotency keys for POST; exponential
backoff with jitter; circuit-breakers for queue saturation.

• Serialization: validate JSON schemas at the gateway;
prefer compact binary for WS if client fleets allow.

• Observability: export per-connection latency histograms,
queue depth, and hot-hit ratio.

/etc/systemd/system/ws-gateway.service
[Service]
ExecStart=/usr/bin/python3 /opt/app/ws_gateway.py --port 8080
Restart=always
[Install]
WantedBy=multi-user.target

VII. CONCLUSION

A hybrid front door with transformer-inspired queues deliv-
ers predictable wins: persistent WS lowers interface overhead,

	Introduction
	Related Work
	Methods
	Front Doors
	Queues
	Simulator

	Experimental Setup
	Results
	Discussion
	Conclusion

