Hybrid Async Communication Interfaces with
Transformer-Inspired Queues

Benjamin J. Gilbert

Abstract—We study a practical hybrid front door for message-
oriented systems: REST (HTTP/1.1 keep-alive) and WebSocket,
backed by transformer-inspired queues. We compare syn-
chronous FlashQueue against asynchronous FlashQueue (k-way
servers) and a MemoryMappedFlashQueue with hot/cold buffers.
Metrics: mean/p95 latency, throughput, CPU-cost proxy, con-
nection amortization, and cache-hit ratio. Results show that (i)
persistent WebSocket amortizes connection setup and reduces
per-message overhead, (ii) async FlashQueue improves utilization
under load, and (iii) MemoryMappedFlashQueue wins on hit-
heavy workloads.

I. INTRODUCTION

Industrial platforms rarely bet on a single interface: syn-
chronous REST integrates with existing fleets and gate-
ways; WebSocket enables persistent, low-latency bidirectional
streams. We analyze a hybrid front door feeding transformer-
inspired queues: (a) FlashQueue (priority x time decay) in
sync/async modes, and (b) MemoryMappedFlashQueue with a
hot SRAM-like buffer and a cold HBM-like store. We quantify
end-to-end impact and provide concrete integration guidance
(keep-alive, backpressure, retries, TLS termination).

II. RELATED WORK

Async event loops, persistent sockets, and 10-aware data
structures reduce overhead in production systems. Inspired
by memory-hierarchy-aware attention optimizations, we eval-
uate analogous queue designs under realistic interface over-
heads (handshakes, headers, serialization) and concurrency
constraints.

III. METHODS

A. Front Doors

REST: per-connection TCP/TLS handshake amortized over
K messages (keep-alive), plus per-message HTTP overhead.
WebSocket: one handshake per long-lived connection; small
per-message frame overhead.

B. Queues

FlashQueue-sync: single-server dequeue; priority X time-
decay admission. FlashQueue-async: £ servers (default k=4)
in parallel. MemMappedFlashQueue: hot buffer with hit
probability ppet; hits get a service speedup; misses incur a
cold penalty.

120 A

111.94

100 4

801

60

Mean Latency (ms)

40 -

201

0.49 0.12 0.09 0.10
T T T T

rest Y rest memm°P ws Y™ WS mermmaP ws_asY"¢

Fig. 1: Mean latency (ms): rest_sync=, rest_memmap=,
WS_sync=, ws_memmap=, wWs_async=.

C. Simulator

We generate a Poisson arrival stream at QPS A\. Each mes-
sage picks an interface and enqueues. We maintain a server-
availability heap (size k): start time is max(arrival, min free).
Latency = interface overhead + queue wait + service time;
throughput = N/wall-time. CPU proxy = sum of ser-
vice+parsing time; cache-hit ratio observed for mem-mapped
queue. We report mean and p95 latencies over runs.

IV. EXPERIMENTAL SETUP

Default: N=50k messages, QPS 8k, REST keep-alive
K=20, WebSocket single long-lived connection, hot-hit
Phot=0.65, async concurrency k=4. Variants: rest_sync,
rest_memmap, ws_sync, ws_memmap, ws_async. We
also sweep REST K € {1,5,10,20,50,100} to visualize
handshake amortization.

V. RESULTS
Variant Lat (ms) p95 (ms) Thruput CPU (ms/msg)
rest_sync 111.94 195.64 1983.562 0.204 0.
rest_memmap 0.49 0.56 1998.856 0.189 0.
ws_sync 0.12 0.21 1998.886 0.104 0.
wSs_memmap 0.09 0.15 1998.887 0.089 0.
ws_async 0.10 0.14 1998.886 0.099 0.

0.25 -
200 A 0.204
0.20 1
2 3
£ 150 £o1s
g +
i 100
2 g 0.10
50 1 0.05 A
0- 08 021 0.45 014 0.00 -
rest SY"° (est’men’\‘“ap ws_SY"© \stmeﬂ\“‘ap ws_asyn© rest_sYN¢ Test’\,ﬂen’\r\'\a‘) ws_syne Ws’memmap ws_asy"©
Fig. 2: p95 latency (ms): rest_sync=, rest_memmap=, Fig. 4: CPU-cost proxy (ms/msg): rest_sync=, rest_memmap=,
WS_Sync=, ws_memmap=, WS_async=. WS_Sync=, ws_memmap=, WS_async=.
—8— REST keep-alive
80000 - —=-=- WebSocket (1 conn)
2000 4 1983.562 1998.856 1998.886 1998.887 1998.886
60000
ﬁ’ 1500 léi
z g
2 3 40000 -
5 5
3 1000 g
< =
£
20000 A
500 -
R e .- o °--
° nc ap nc ap nc 0 20 40 60 80 100
rest Y rest,“"emm ws_SY ws_merm™ ws_25Y Messages per TCP/TLS connection (K)

Fig. 5: REST keep-alive amortization: mean latency vs mes-
sages/connection K; WebSocket shown as dashed baseline
(single handshake).

Fig. 3: Throughput (msgs/s): rest_sync=, rest_memmap=,
WS_Sync=, ws_memmap=, Ws_async=.

V1. DIscussioN o Retries: use idempotency keys for POST; exponential
backoff with jitter; circuit-breakers for queue saturation.

o Serialization: validate JSON schemas at the gateway;
prefer compact binary for WS if client fleets allow.

o Observability: export per-connection latency histograms,
queue depth, and hot-hit ratio.

WebSocket reduces per-message overhead via persistent
framing, shifting bottlenecks into queuing. Async FlashQueue
exploits parallel servers to shrink waits; MemoryMapped-
FlashQueue wins when hot-hit rate is high. REST remains
viable at moderate K; poor reuse (small K) hurts tails. For
production: prefer WS for chatty/streaming clients; keep REST # /etc/systemd/system/ws-gateway.service
for control paths; ensure backpressure maps to HTTP 429 / WS [Service]
close codes; use idempotency keys for retries; terminate TLS ~ExecStart=/usr/bin/python3 /opt/app/ws_gateway.py —-port
at edge and forward mTLS internally; budget for serialization Tiiziii?lways
and JSON schema checks. WantedBy=multi-user.target

Deployment Notes.:
o Gateway: terminate TLS at the edge (e.g., NGINX),

enforce keep-alive (REST) and idle timeouts (WS), map A hybrid front door with transformer-inspired queues deliv-
backpressure to HTTP 429 or WS close codes. ers predictable wins: persistent WS lowers interface overhead,

VII. CONCLUSION

	Introduction
	Related Work
	Methods
	Front Doors
	Queues
	Simulator

	Experimental Setup
	Results
	Discussion
	Conclusion

