OpenBench-AR: Reproducible Benchmarks for
RF-to-AR Systems

Anonymous Authors

Submitted for review

Abstract—Research on radio-frequency (RF) sensing for aug-
mented reality (AR) has produced a variety of prototypes—from
RF-driven casualty triage to threat detection—but the lack
of standardized datasets and evaluation frameworks hampers
reproducibility. Machine learning workflows are often frag-
mented and informal; datasets, code and configurations are
loosely coupled, making it difficult to trace experiments and
reproduce results [1]. Reproducibility requires capturing not just
data and code, but also the process and decisions behind an
experiment [2]. We introduce OpenBench-AR, an open-source
benchmark suite that provides standardized RF traces, JSON
metrics and LaTeX figure/table autogeneration for RF-to-AR
systems. OpenBench-AR packages a client simulator, exporters
and a README . md that guide users through dataset reproduction
and one-command generation of evaluation figures. We demon-
strate OpenBench-AR on prior RF-AR pipelines, showing how
researchers can reproduce latency, frame rate and power results
across hardware. Our artifact is ready for artifact evaluation
tracks at ReproNLP/MLSys and systems demo workshops.

I. INTRODUCTION

Augmented reality systems that integrate RF sensing (e.g.,
Wi-Fi, UWB, BLE) with heads-up displays promise situational
awareness in adversarial or obscured environments. Recent
work has explored real-time RF scene analysis on wearables,
brokerless pub/sub architectures for alert distribution and
triage overlays for casualty management. Despite progress,
the community lacks a standardized, reproducible evalua-
tion methodology. Reproducing results is difficult because
researchers often share only code fragments without the data
and scripts needed to generate figures. As noted in recent
reproducibility studies, ML workflows remain fragmented and
data, code and configuration are often loosely coupled, limiting
traceability and hindering reproducibility [1]. Furthermore,
reproducibility should capture not only static results but the
dynamic interactions between data, code and process [2].
OpenBench-AR addresses these challenges by packaging data,
metrics and scripts in a way that promotes end-to-end repro-
ducibility.

II. BENCHMARK DESIGN
A. Standardized RF Traces
OpenBench-AR provides a set of RF-AR traces collected

using the Glass-style client simulator. Each trace is stored as
a directory containing:

o raw—a CSV file of timestamped RF events (e.g., Wi-Fi
channel state information, BLE RSSI, UWB channel im-
pulse responses) recorded at 200 Hz. Each event includes

metadata such as frequency band, antenna index and
quality indicators.

o labels—ground-truth annotations indicating event class
(e.g., casualty, drone, vehicle) and priority level.

o system—Ilogs of AR client CPU/GPU frequency, power
draw and temperature.

e env—sensor context (ambient temperature, channel con-
ditions) and simulation parameters.

Traces are versioned and named following the convention
bench_YYYYMMDD scenarioID. An index file lists all
traces with descriptive metadata.

B. Metrics Schema

To facilitate structured analysis, OpenBench-AR defines a
JSON schema for capturing metrics at different stages of the
RF-to-AR pipeline. Metrics include:

o Latency breakdown: time from RF event capture to
overlay rendering (broker, encoding, transmission, client
rendering).

« Frame rate and load: median and percentile frame rates
as a function of overlay count.

o Power and thermal: energy per alert, peak device tem-
perature.

o User performance: miss rate, false acknowledgements,
and glanceable information density where applicable.

Each run generates a JSON file under results/ summaris-

ing these metrics. A manifest enumerates the JSON files and
provides provenance (trace ID, commit hash, hardware used).

C. Figure and Table Generation

One of the key features of OpenBench-AR is automatic
figure and table generation. We provide Python scripts that
consume the JSON metrics and output TikZ/PGFPlots code
or CSV tables for direct inclusion in LaTeX. For example:

python3 openbench_to_pgf.py ——metrics results/late

—-—figure figs/latency_breakdown.tex

python3 openbench_to_table.py —--metrics results/fp

--table tables/fps_comparison.tex

These commands produce LaTeX fragments that can be
input using \input {figs/latency_breakdown.tex}
within the main paper. We include a Makefile with a target
make figures that generates all necessary plots and tables

T T I [
80 [{ —o— Total latency
—&— Broker+encode

60 | = Transmission+render

10 .

Latency (ms)
[
|

20

1 5 10 20
Subscribers

Fig. 1. Latency breakdown reproduced using OpenBench-AR. Total latency
increases with the number of subscribers; the breakdown matches previously
reported results.

in one command. This workflow encourages authors to publish
not only the final PDF but also the scripts that created it.

III. METHODOLOGY

We evaluate OpenBench-AR by applying it to replicate
two prior experiments: (1) the RF-QUANTUM-SCYTHE la-
tency benchmark (latency microbench) and (2) the Glass UX
frame-rate sweep. For each experiment we reproduce the traces
and metrics using the provided client simulator and exporters,
then generate plots via the openbench_to_pgf.py script.

A. Latency Benchmark

We execute the latency microbenchmark on an NVIDIA
Jetson and a Pixel 8 phone using the command:

python3 glass_client_sim.py —--bench —--duration 120 \

——-subscribers 1 5 10 20 \
——export results/latency.json

The resulting JSON contains p50/p99 latency for each
pipeline component. Figure[I]shows the auto-generated latency
breakdown. The curves match the original paper’s results,
demonstrating reproducibility.

B. Frame-Rate Sweep

Next we sweep overlay counts from 1 to 20 using the
Glass UX pipeline and measure frame rate on the Jetson
platform. We run:

60 T T T
—o— Naive
50 —&— Glass UX | |

Frame rate (fps)
>
(an)
[
|

9 | | |
01 5 10 15 20

Number of overlays

Fig. 2. Frame rate versus number of overlays reproduced using
OpenBench-AR. Glass UX maintains interactive frame rates while the naive
interface collapses.

faithfully reproduced and visualized using simple commands.
The emphasis on JSON schemas and LaTeX autogeneration
ensures that future projects can adopt the same conventions,
fostering comparability. This aligns with calls to view re-
producibility holistically, capturing data, code and process
interactions rather than just script re-execution [2].

Limitations include the scope of available traces—currently
limited to the pipelines we reproduced—and the need for
wider community contributions. We encourage researchers to
submit additional traces and metrics via pull requests. In future
work we plan to integrate support for real-time edge caching
experiments and to add metrics on security, privacy and user
study outcomes.

V. CONCLUSION

OpenBench-AR provides a reproducible benchmark suite
for RF-to-AR systems. By standardizing trace formats, defin-
ing JSON metrics and supplying scripts for automatic figure
and table generation, it simplifies the sharing and evaluation
of RF-AR experiments. We demonstrate that prior results can
be replicated on new hardware with minimal effort, and that
figure generation can be automated via a make figures
command. We hope OpenBench-AR will serve as a foundation
for future artifact submissions to reproducibility tracks and
systems demos, fostering transparency and comparability in
RF-to-AR research.

python3 glass_client_sim.py --fps-sweep —-overlays 1 5 10 15REFERENCES

—-—export results/fps.json

[1] S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis in

python3 openbench to pgf Py ——metrics results/ﬂp@llﬂﬁ-ﬂ;@lﬂj]ngbdbed science,” Patterns, vol. 4, no. 9, p- 100804, 2023.
(2]

—-—figure figs/fps_overlays.tex

Figure 2] shows the generated FPS vs overlay count plot. As
in the original paper, Glass UX maintains over 30{ps up to
20 overlays, while the naive interface drops below 25 fps.

IV. DISCUSSION

By packaging raw traces, metrics schemas and figure gen-
eration scripts, OpenBench-AR enables researchers to share
experiments that can be reproduced and extended. Our experi-
ments show that results from previous RF-to-AR papers can be

J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-scale
study about quality and reproducibility of jupyter notebooks,” pp. 507—
517, 2019.

	Introduction
	Benchmark Design
	Standardized RF Traces
	Metrics Schema
	Figure and Table Generation

	Methodology
	Latency Benchmark
	Frame‑Rate Sweep

	Discussion
	Conclusion
	References

