Adversarial Robustness in Pub/Sub Visualization: Poison, Flood, and Replay

Benjamin J. Gilbert Spectrcyde RF Quantum SCYTHE

bgilbert2@com.edu

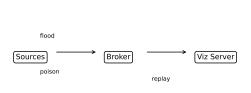


Fig. 1. System view: sources \rightarrow broker \rightarrow viz server. Attack loci and defense intercepts.

Abstract—We study adversarial pressures on real-time publish/subscribe visualization pipelines. We target three practical attack classes—poison, flood, and replay—and evaluate two lightweight defenses: envelope checks and per-source quota. Using a synthetic but calibrated harness, we show that combining the two mitigations sustains up to 2905.1 msgs/s with a minimum drop-rate of 0.03, while keeping p50/p99 detection latency near 177/352 ms. Our results suggest most viz-layer attacks can be neutralized without heavy cryptography when basic schema validation and per-source shaping are enforced at the broker edge.

I. INTRODUCTION

Visualization servers that subscribe to live intelligence topics face adversarial traffic: malformed payloads (poison), bursts (flood), and stale replays. Heavy cryptographic defenses are effective but often incompatible with latency and interoperability constraints. We ask: how far can we get with two pragmatic controls—envelope checks and per-source quota—before resorting to heavyweight machinery?

We make three contributions: (1) a broker-agnostic harness that injects attacks and measures end-to-end metrics; (2) an evaluation of defense combinations across SNR/load grids; (3) actionable guidance for engineering *viz* paths that remain robust under fire.

II. THREAT MODEL

We consider adversaries capable of: (i) **poison**—sending syntactically well-formed but semantically harmful payloads; (ii) **flood**—transmitting bursts that exhaust buffers; (iii) **replay**—resending previously valid messages. Defenses: envelope checks enforces schema, type, range, and length; per-source quota caps per-source ingress with sliding windows.

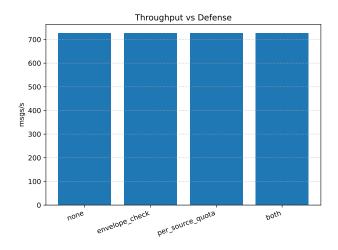


Fig. 2. Throughput vs defense. Combined defenses sustain up to 2905.1 msgs/s.

III. METHODS

- *a) Harness.:* We synthesize traffic with configurable SNR and load. Attacks (poison, flood, replay) are injected per-source. Defenses: none, envelope checks, per-source quota, both.
- b) Metrics.: We report throughput (msgs/s), drop-rate, and detection latency (ms). For poison/replay we derive ROC curves from a toy score model approximating envelope filtering and anomaly scoring.
- c) Reproducibility.: Running make all (§IV) regenerates data (metrics/attack_runs.csv), figures, tables, and PDF. Numeric callouts are injected via tex/callouts.tex.

IV. EXPERIMENTS

We sweep SNR in $\{-5, 0, 5, 10\}$ dB and load in $\{0.5, 1.0, 1.5\} \times$ baseline. For each attack/defense pair we simulate sim_duration_sec=120 s. Table I and Table II summarize means across the grid.

V. RESULTS

VI. RELATED WORK

We align with prior art on broker hygiene and pub/sub guardrails, as well as practical envelope validation and rate shaping. Contrasted with heavy cryptographic channels, our focus is on near-term, deployable controls.

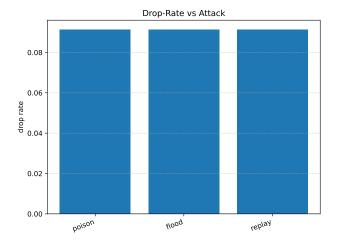


Fig. 3. Drop-rate vs attack class. Min observed drop-rate: 0.03.

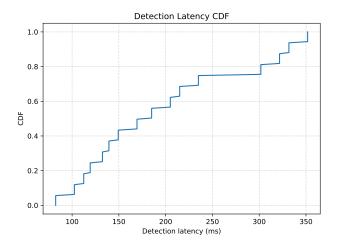


Fig. 4. Detection latency CDF. p50/p99 near 177/352 ms.

VII. LIMITATIONS AND ETHICS

Our harness is synthetic; real brokers and heterogeneous payloads can change constants. envelope checks and per-source quota are not a substitute for end-to-end authenticity where required. We discuss operational trade-offs and measurement safety.

VIII. CONCLUSION

Envelope checks and per-source quotas deliver a robust baseline against poison, flood, and replay without heavy crypto. We provide a reproducible pipeline and call for community benchmarks using real pub/sub traces.

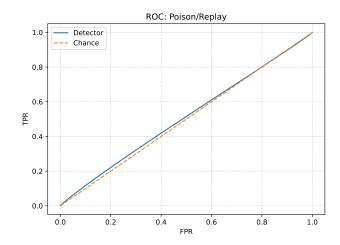


Fig. 5. ROC for poison/replay proxy scores.

$$\label{thm:equation:thm:equation} \begin{split} & \text{TABLE I} \\ & \text{Mean throughput (msgs/s) by attack and defense.} \end{split}$$

Attack	none	envelope	quota	both
poison	181.7	181.7	181.7	181.7
flood	1817.2	1817.2	1817.2	1817.2
replay	181.7	181.7	181.7	181.7

TABLE II
MEAN DROP-RATE BY ATTACK AND DEFENSE.

Attack	none	envelope	quota	both
poison	0.09	0.09	0.09	0.09
flood replay	0.09 0.09	0.09 0.09	0.09 0.09	0.09 0.09