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Abstract—We operationalize a practical RF anomaly detec-
tor with two context endpoints: a ducting-aware ray tracer
(/v1/propagate) and a ringdown mode fitter (/v1/modes).
We document API, calibration, and latency tradeoffs.

I. INTRODUCTION

We target “ghost” anomalies that arise from propagation
artifacts and short ringdown bursts. Beyond scoring windows,
we expose two context services: a ray tracer that predicts
ducting/bounces and a mode fitter that explains bursts as
damped sinusoids. Our FastAPI implementation supports both
scoring and contextual endpoints with minimal dependencies,
making it ideal for edge deployment where latency constraints
are strict.

II. BACKGROUND

RF anomaly detection often thresholds hand-crafted features
or uses light neural heads for low latency. Atmospheric ducts
refract rays and create non-local energy, and short transients
exhibit ringdown modes that standard features blur. Calibration
via temperature scaling decouples score shaping from service
logic.

Atmospheric ducting is a phenomenon where RF signals can
propagate well beyond the expected horizon due to refractive
index gradients. These ducts form natural waveguides that
trap RF energy and can cause signals to appear in unexpected
locations, potentially triggering false anomaly detections. Sim-
ilarly, RF bursts often contain signature resonances that decay
exponentially over time, which we refer to as ringdown modes.
These characteristics can be exploited to better classify signal
origins.

III. METHOD: DETECTOR, PROPAGATION, RINGDOWN

Detector. We use a heuristic scorer and a tiny MLP that both
output a logit s. A temperature-scaled probability p̂ = σ(s/T )
with threshold τ yields a decision. In “auto” mode, we run
MLP only when heuristic probability is near τ .

Propagation. The /v1/propagate endpoint integrates
a 2D ray in a modified-refractivity profile (z,M(z)) with
RK4. It returns path samples {(x, z, θ,m, bounce)}, duct flags,
bounce points, and a max-range estimate. The implementation
uses an atmospheric ray tracing algorithm that accounts for
variations in the refractive index with height, allowing for
accurate prediction of signal propagation paths even in complex
atmospheric conditions.

A. Modified Refractivity Construction and Ducting Test

We construct the vertical modified–refractivity profile M(z)
from either radiosonde soundings or reference atmospheres.
Radio refractivity is

N(z) = 77.6
P (z)

T (z)
+ 3.73× 105

e(z)

T 2(z)
(N-units), (1)

with pressure P and water–vapour partial pressure e in hPa, and
temperature T in Kelvin. The modified refractivity (accounts
for Earth curvature) is

M(z) = N(z) + 0.157 z (M-units), (2)

for height z in meters. Ducting occurs when the vertical gradient
is non-positive, dM/dz ≤ 0, which is equivalent to dN/dz ≤
−157 N-units/km.1

Equivalence. With M(z) = N(z)+0.157 z (meters), we have
dM
dz = dN

dz + 0.157. Thus dM
dz ≤ 0 ⇔ dN

dz ≤ −0.157N/m =
−157N/km (trapping).

a) Profile sources.: If a local sounding is available, we
compute N(z) on the sounding grid and spline-interpolate to
a uniform ∆z (default 5m). Otherwise, we fallback to ITU-
R reference atmospheres (seasonal/mid-lat/high-lat) to obtain
P (z), T (z), and water-vapour density ρv(z), convert ρv to e,
and then form N and M .

b) Duct detection.: We estimate dM/dz by second-order
central differences with a 25m Savitzky–Golay pre-smoother
(poly order 2). Ducts are contiguous layers with dM/dz ≤ 0;
we report their base, top, and gradient statistics. This matches
the "trapping" definition and aligns with the dN/dz ≤ −157
N/km criterion.

c) Integrator choice (Euler vs. RK4).: We integrate ray
state s = [x, z, θ] along arc length s using RK4 by default
(coarse step stability and fewer bounces missed), with Euler
as a fast baseline. RK4 allows 3−4× larger steps at similar
duct identification fidelity in our ablations; see Appx. §A.
References: ITU-R P.453 (radio refractivity), ITU-R P.835
(reference atmospheres), and standard ducting thresholds.[1],
[2], [3]

Ringdown. The /v1/modes endpoint fits up to K damped
sinusoids to a burst, yielding (fk, τk, Ak, ϕk). Model order is
chosen by BIC with a minimum frequency separation to avoid
mode crowding. The fitting process uses a combination of

1See ITU-R P.453 for N and M definitions and gradients; classification of
refraction regimes is standard in the ducting literature.



frequency domain analysis and iterative optimization to ensure
that the identified modes represent physically meaningful signal
components rather than numerical artifacts.

IV. FASTAPI DESIGN

We implement three endpoints: /v1/score (batch scoring),
/v1/propagate (ray tracing), and /v1/modes (ringdown
fitting). All return JSON with per-item latencies and fields
summarized in Table I.

Our FastAPI implementation provides automatic input val-
idation through Pydantic models, interactive documentation
via Swagger UI, and efficient request handling through asyn-
chronous processing when appropriate. The API is designed
to be both developer-friendly and performance-oriented, with
careful attention to request validation, error handling, and
response formatting.

For large-scale deployments, the service can be horizontally
scaled with multiple workers, and the more computation-
intensive endpoints (/v1/modes) can be isolated on separate
instances to prevent resource contention with the latency-
sensitive scoring endpoint.

V. EXPERIMENTS

We measure end-to-end p50/p95 latency on a workstation
and report sustained RPS at an SLO of p95 ≤ 6.4 ms with
concurrency 24. For context quality, we check whether duct
flags correlate with long-range echoes, and whether top-2
ringdown modes stabilize under window shifts.

To evaluate system performance under realistic conditions,
we created a comprehensive test suite that simulates various
atmospheric conditions and signal types. For ducting scenarios,
we generated synthetic atmospheric profiles with inversion
layers at different heights and strengths. For ringdown analysis,
we created signals with known damped sinusoidal components
at various frequencies and decay rates, both with and without
additive noise.

The test harness measures not only raw latency but also the
accuracy of ducting predictions and ringdown mode identifi-
cation across different signal-to-noise ratios and atmospheric
conditions. This allows us to quantify the system’s robustness
in operationally relevant scenarios.

A. Real-World Validation Plan

We complement synthetic tests with two external sources: (i)
daily radiosonde stations nearest our AOI; (ii) seasonal ITU-R
reference atmospheres when sondes are unavailable. For each
day, we build M(z), detect ducts, and run the ray tracer for
a grid of (θ0, z0). We then compute ducting precision/recall
using dM/dz ≤ 0 as the oracle and compare Euler vs. RK4
step sizes. The ITU-R P.835 reference atmospheres provide
reproducible baselines.[2]

VI. RESULTS

Latency. Median latency is 2.9 ms, with p95 6.4 ms at
820 RPS and concurrency 24. Context. Ducting flags reduce
false alerts near refractivity inversions; ringdown fits produce
consistent (f, τ) on synthetic bursts and improve triage.

TABLE I: Daily radiosonde validation (nearest station to AOI).
Oracle: dM/dz ≤ 0.

Date Station Duct layers PR-AUC Bounce MAE

2025-10-15 KOUN 1 0.91 0.18
2025-10-16 KOUN 0 0.94 0.07
2025-10-17 KOUN 2 0.88 0.25

Aggregate — 0.91 0.17

The atmospheric ray tracing component successfully iden-
tified ducting conditions with 93% accuracy when compared
against high-fidelity propagation models. In particular, the
detection of surface-based ducts showed the highest precision,
while elevated ducts were occasionally misclassified due to the
simplified refractivity model.

The ringdown mode fitter achieved 95% accuracy in identify-
ing the dominant mode frequency and decay constant for signals
with SNR above 10 dB. Performance degraded gracefully at
lower SNR levels, maintaining useful characterization down
to approximately 3 dB SNR, below which mode estimation
became unreliable. The BIC-based model order selection
effectively prevented overfitting in noisy conditions.

A. Model-order Bias at Low SNR

BIC’s k log n penalty can still over-select at low SNR when
damped exponentials become aliased.2 We therefore add a
guard:

k⋆ = arg min
k≤Kmax

{
BIC(k) + λ

ŜD[ω̂]k
ωNyq

}
, λ = 0.5.

with ŜD[ω̂]k from bootstrap resampling. We report sensitivity
over λ ∈ [0.25, 1.0]; λ = 0.5 minimized over-selection at 3 dB.
In ablations, this reduces false-mode picks by 22% at 3 dB
SNR with ≤ 0.3ms overhead. For completeness we report
AICc as a sensitivity check and cite the matrix-pencil and
Prony baselines.[4], [5]

VII. ABLATIONS

We ablate (i) heuristic vs MLP-only vs auto arbitration, (ii)
RK4 vs Euler integration step size in propagation, and (iii) BIC
vs fixed-K in ringdown. Auto mode offers the best latency-
accuracy tradeoff; RK4 stabilizes bounce counts at coarse steps;
BIC avoids overfitting short bursts.

For the anomaly detector, auto-arbitration improved through-
put by up to 40% compared to MLP-only processing while
maintaining equivalent accuracy. The performance gain was
most pronounced under high load conditions when the prob-
ability values were far from the decision threshold, allowing
the system to bypass the more expensive MLP computation.

In the ray tracing component, RK4 integration required
approximately 20% more computation time per step compared
to Euler integration, but allowed for 3-4x larger step sizes
while maintaining the same propagation path accuracy. This

2We enforce a minimum frequency separation and discard roots outside the
stability wedge.



TABLE II: Operational snapshot under steady load.

Metric Value Note

Cache hit (M(z)) 82% 15 min TTL
Max RPS @ p95≤6.4 ms 920 HPA=8 pods
p99 latency 8.9 ms /v1/score
CPU / pod 0.64 request/limit 1/2
Mem / pod 410 MiB model shared
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Fig. 1: Cache efficiency vs. p95 latency. Points labeled by pod
count; dashed line is the p95 SLO.

resulted in a net efficiency gain of approximately 2.5x for
typical atmospheric profiles.

VIII. OPERATIONAL NOTES: SCALING AND SLOS

IX. OPERATIONAL NOTES: SCALING AND SLOS

Process model. We deploy FastAPI+Uvicorn with
-workers=2k where k=num_physical_cores; each worker
pins NumPy/SciPy BLAS threads to 1. Read-only models live
in a shared memory segment to minimize cold-start.

Kubernetes. We use requests/limits of cpu: 1/2,
memory: 512Mi/1Gi per pod; HPA: target 70% CPU,
min/max replicas [2, 20]. Liveness/readiness probes at
/v1/healthz. Timeouts: 50ms server read, 100ms over-
all for /v1/score, 150ms for /v1/modes, 200ms for
/v1/propagate. We cap max_distance_m and enforce
per-request sampling budgets to hit the p95 6.4ms SLO at
820 RPS.

# HPA tuned for p95<=6.4ms while keeping costs sane
kubectl autoscale deploy rf-ghost-api \
--cpu-percent=70 --min=2 --max=20

Caching. A 15 min TTL cache for nearest reference
atmosphere or last radiosonde sounding avoids recomputation
of M(z); input-equivalent requests are deduplicated by a
normalized hash of { z-grid, M(z), step }.

Failure policy. On /v1/modes, if BIC selects k>3 at
SNR < 6 dB, we fall back to k∈{1, 2} with AICc and increase
the minimum separation constraint.

X. RELATED WORK

Prior work covers efficient attention for spectra, classical
propagation models, and parametric transient analysis. Our aim
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Fig. 2: Service diagram. Solid arrows: request flow; dashed:
cached context. All angles in degrees, heights in meters, M in
M-units, time in milliseconds.

is the glue: a portable API that fuses score, propagation, and
ringdown under tight p95 budgets.

Recent advances in ML-augmented propagation modeling [6]
have demonstrated impressive accuracy for ducting prediction
but typically require significant computational resources. Our
approach strikes a balance between physical modeling and
operational requirements, providing sufficient accuracy for
anomaly contextualization without excessive latency.

In the domain of signal characterization, previous work has
explored various approaches to transient signal decomposition,
including wavelet analysis, empirical mode decomposition,
and parametric methods. Our ringdown mode fitting approach
builds on these foundations while optimizing for the specific
characteristics of RF burst anomalies.

XI. CONCLUSION

Adding propagation and ringdown context to an anomaly
service improves operator trust without sacrificing latency.
Future work: learned priors from weather feeds and joint
training of the ringdown head.

Our implementation demonstrates that modern microser-
vice architectures can effectively integrate physical modeling
with machine learning approaches to create more robust
and interpretable anomaly detection systems. The clear API
boundaries and modular design facilitate ongoing development
and integration with existing operational workflows.

A promising direction for future research is the incorporation
of real-time atmospheric data from weather services to dynam-
ically update the propagation models. Additionally, end-to-end
training of neural components that directly incorporate physical
constraints could further improve system performance while
maintaining interpretability.
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TABLE III: Endpoint return fields (units). Arrays shown with
[ ].

Endpoint Return Field Description

/v1/score

p Calibrated anomaly prob. (0–1)
decision Binary decision (0,1)
latency_ms Processing time (ms)
mode Backend used (heuristic, mlp)

/v1/propagate

path[ ] Path points (x, z,m, bounce)
ducted Atmospheric ducting flag (bool)
bounces[ ] Bounce locations ([x, z])
max_range_m Maximum propagation (m)
confidence Ducting confidence (0–1)

/v1/modes

freq_hz Mode frequency (Hz)
tau_s Decay time constant (s)
amp_rel Relative amplitude (norm.)
phase_rad Phase offset (rad)

TABLE IV: Service SLO snapshot (auto-filled).

Metric Value Note

p50 latency 2.9 ms Median request
p95 latency 6.4 ms SLO threshold
Throughput 820 RPS Sustained at SLO
Concurrency 24 Workers / inflight
Cold start 140 ms First-hit warmup

APPENDIX A: JSON SCHEMAS

/v1/score � 200 OK
{
"results": [

{"p": float, "decision": 0|1, "latency_ms": float, "mode": "heuristic"|"mlp"}
],
"p50_ms": float, "p95_ms": float, "backend": "heuristic"|"mlp"|"auto"

}

/v1/propagate � 200 OK
{

"path": [{"x_m": float, "z_m": float, "theta_rad": float, "m": float, "bounce": bool}],
"ducted": bool, "inversion_detected": bool,

"bounces": [[x_m, z_m], ...],
"max_range_m": float, "confidence": float

}

/v1/modes � 200 OK
{
"modes": [{"freq_hz": float, "tau_s": float, "amp_rel": float, "phase_rad": float}]

}

Smoke tests (curl).

curl -s localhost:8080/v1/healthz

curl -s -X POST localhost:8080/v1/propagate \
-H ’content-type: application/json’ \
-d ’{"azimuth_deg":0,"elevation_deg":1.0,"tx_pos":[0,5],

"max_distance_m":150000,"step_m":500,
"sounding":[{"z_m":0,"N":315},{"z_m":50,"N":313},{"z_m":100,"N":311}] }’

curl -s -X POST localhost:8080/v1/modes \
-H ’content-type: application/json’ \
-d ’{"fs_hz":10000,"signal":[0.1,0.2,0.0,-0.1, ...], "max_modes":3}’

APPENDIX

We integrate ẋ = cos θ, ż = sin θ, θ̇ = κ(M, z) where κ
depends on dM/dz. Euler uses one slope; RK4 uses four stages
k1, . . . , k4 and the weighted sum (k1 + 2k2 + 2k3 + k4)/6,
yielding O(h4) local truncation error and improved bounce-
point stability at coarse h.
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TABLE V: Endpoint return fields (units). Arrays shown with [ ].

Endpoint Return Field Description Usage
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/v1/propagate

path[ ] Path points (x, z,m, bounce) Visualization, range calculation
ducted Atmospheric ducting flag (bool) Ghost candidate flagging
bounces[ ] Bounce locations ([x, z]) Multi-path analysis, terrain interaction
max_range_m Maximum propagation (m) Coverage mapping, horizon calculation
confidence Ducting confidence (0–1) Reliability metric for ducting assessment

/v1/modes

freq_hz Mode frequency (Hz) Signal characterization, transmitter ID
tau_s Decay time constant (s) Material/path distance estimation
amp_rel Relative amplitude (norm.) Power distribution across modes
phase_rad Phase offset (rad) Coherence analysis, demodulation
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