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Abstract—This paper presents a novel approach for filtering
functional Magnetic Resonance Imaging (fMRI) data streams
using Bayesian techniques, specifically designed for real-time
Radio Frequency (RF) control loops. We implement and compare
two primary filtering methods: causal Kalman filtering for real-
time applications and non-causal Gaussian smoothing for optimal
post-processing analysis. Our results demonstrate that Bayesian
filtering techniques can significantly improve the signal-to-noise
ratio (SNR) of fMRI data while maintaining critical temporal
features necessary for RF control systems. Performance metrics
including filter latency, computational efficiency, and filtering
efficacy are analyzed across different noise conditions. The
proposed approach enables more robust RF control systems that
can adapt to the inherently noisy nature of fMRI signals.

Index Terms—fMRI, Bayesian filtering, Kalman filter, Gaus-
sian smoothing, RF control loops, real-time signal processing,
neuroimaging

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) has be-
come an essential tool in neuroscience and clinical appli-
cations, providing valuable insights into brain function and
connectivity [1]]. However, the inherent noise in fMRI signals
presents significant challenges for real-time applications, par-
ticularly when these signals are used to drive Radio Frequency
(RF) control loops in advanced neuroimaging setups [2].

Real-time fMRI (rtfMRI) systems require efficient and
effective filtering techniques that can operate within strict
latency constraints while preserving the underlying neural
signals of interest [3|]. Traditional filtering approaches often
fail to balance the trade-off between noise reduction and signal
preservation, especially in the presence of physiological noise,
scanner artifacts, and motion-related distortions.

In this paper, we propose a Bayesian filtering framework
for fMRI data streams that addresses these challenges. We
implement and compare two complementary approaches:

e A causal Kalman filter for real-time applications that
provides optimal filtering given current and past mea-
surements only.

o A non-causal Gaussian smoothing technique for post-
processing analysis that utilizes the entire time series for
optimal results.

Our approach models fMRI time series as an autoregres-
sive process with Gaussian noise, a well-established model
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in neuroimaging literature [4]]. By integrating these filtering
techniques into RF control loops, we demonstrate improved
stability, accuracy, and robustness in neuroimaging experi-
ments.

II. METHODS
A. fMRI Signal Modeling

We model the fMRI time series as a first-order autoregres-
sive process (AR(1)), which has been shown to effectively
capture the temporal autocorrelation in fMRI data [5]:

Ty = QTs_1 + Wy (D

where x; is the state at time ¢, ¢ is the autoregressive
coefficient (typically between 0.2 and 0.5 for fMRI data), and
w; is the process noise, assumed to be Gaussian with zero
mean and variance o2.

The observation model is given by:

Yp = Ty + V¢ (2)

where y; is the observed fMRI signal, and v; is the
measurement noise, assumed to be Gaussian with zero mean
and variance o2

o
B. Kalman Filtering

For real-time applications, we implement a Kalman filter,
which provides an optimal estimate of the current state given

all past observations. The Kalman filter consists of prediction
and update steps:
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where Z;;_; is the predicted state, %4, is the updated state
estimate, P;;_; is the predicted error covariance, Py; is the
updated error covariance, and K is the Kalman gain.



C. Gaussian Smoothing

For post-processing analysis, we implement Gaussian
smoothing, which provides an optimal estimate of each state
given the entire observation sequence:
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where 27 is the smoothed state estimate at time ¢, NV is the
smoothing window size, and w; are the Gaussian weights:
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with o controlling the width of the Gaussian kernel.

D. RF Control Loop Integration

The filtered fMRI signals are integrated into RF control
loops using a feedback mechanism where the estimated neural
activity influences RF pulse parameters in real-time. The
control loop operates at a frequency of 1 Hz, matching the
typical sampling rate of fMRI acquisitions.

III. EXPERIMENTAL SETUP

We evaluated our filtering approaches using both simulated
and real fMRI data. For simulated data, we generated AR(1)
processes with varying levels of measurement noise (SNR
ranging from O dB to 20 dB). For real data, we used resting-
state fMRI scans from the Human Connectome Project (HCP)
dataset [6]].

The filtering performance was assessed using the following
metrics:

« Signal-to-Noise Ratio (SNR) improvement

e Root Mean Square Error (RMSE) between the filtered

signal and the ground truth (for simulated data)

o Computational efficiency (processing time per volume)

« Filter latency (delay introduced by the filtering process)

o Power Spectral Density (PSD) preservation in relevant

frequency bands

The RF control loop performance was evaluated using a
simulated neuroimaging experiment where the filtered fMRI
signal was used to adjust RF pulse parameters in real-time.

IV. RESULTS
A. Filtering Performance

Figure |I| shows a comparison of raw, Kalman-filtered, and
Gaussian-smoothed fMRI signals under different noise con-
ditions. The Kalman filter provides effective noise reduction
while preserving the temporal characteristics of the signal,
making it suitable for real-time applications. The Gaussian
smoothing approach achieves superior noise reduction but
introduces a delay that makes it unsuitable for real-time
control.

Figure 2] illustrates the SNR improvement achieved by both
filtering methods across different input SNR levels. The Gaus-
sian smoothing consistently outperforms the Kalman filter in
terms of SNR improvement, but this comes at the cost of non-
causality.
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Fig. 1: Comparison of raw fMRI signal (blue), Kalman-filtered
signal (orange), and Gaussian-smoothed signal (green) under
moderate noise conditions (SNR = 10 dB). The Kalman
filter provides effective real-time noise reduction while the
Gaussian smoothing achieves superior results at the cost of
non-causality.
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Fig. 2: SNR improvement achieved by Kalman filtering and
Gaussian smoothing across different input SNR levels. The
non-causal Gaussian smoothing consistently outperforms the
causal Kalman filter.

B. Spectral Analysis

Figure [3] shows the power spectral density (PSD) of the
raw, Kalman-filtered, and Gaussian-smoothed signals. Both fil-
tering methods effectively reduce high-frequency noise while
preserving the low-frequency components that are typically
associated with the hemodynamic response function (HRF) in
fMRI.

C. Computational Performance

Table [I] summarizes the computational performance of
both filtering methods. The Kalman filter achieves processing
times well below the typical TR (repetition time) of fMRI
acquisitions (1-2 seconds), making it suitable for real-time
applications. The Gaussian smoothing, while more computa-
tionally intensive, still provides acceptable performance for
post-processing analysis.
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Fig. 3: Power Spectral Density (PSD) analysis of raw, Kalman-
filtered, and Gaussian-smoothed fMRI signals. Both filtering
methods effectively suppress high-frequency noise while pre-
serving the low-frequency components associated with the
hemodynamic response function.

TABLE I: Computational Performance of Filtering Methods

Metric Kalman Filter  Gaussian Smoothing
Processing time per volume 15.3 ms 42.8 ms
Memory usage 4.2 MB 8.7 MB
Filter latency 0 ms 500 ms

Control loop latency budget
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Fig. 4: Latency budget for the RF control loop using Kalman-
filtered fMRI signals. The total system latency (843 ms)
remains below the critical threshold of 1000 ms required for
effective real-time control.

D. RF Control Loop Integration

Figure [ illustrates the latency budget for the RF control
loop when using the Kalman-filtered fMRI signals. The total
system latency remains below the critical threshold of 1000
ms, allowing for effective real-time control.

V. DISCUSSION

Our results demonstrate that Bayesian filtering techniques,
particularly Kalman filtering, can significantly improve the
quality of fMRI signals for RF control loops. The Kalman
filter provides an optimal balance between noise reduction and
signal preservation while maintaining the causality required for
real-time applications.

The key advantages of our approach include:

o Adaptive filtering based on the signal and noise charac-
teristics

« Minimal computational overhead, enabling real-time pro-
cessing

« Preservation of temporal dynamics critical for neurofeed-
back applications

« Robustness to varying noise conditions

For post-hoc analysis, the Gaussian smoothing approach
provides superior noise reduction and can be used to establish
ground truth for evaluating real-time filtering performance.

A. Limitations and Future Work

Despite its advantages, our approach has several limitations
that warrant further investigation:

o The AR(1) model may be too simplistic for capturing the
complex temporal dynamics of fMRI signals

o The assumption of stationary noise may not hold for long
scanning sessions

o The current implementation does not account for spatial
correlations in fMRI data

Future work will focus on extending the Bayesian filtering
framework to incorporate spatial information through multi-
variate models, implementing adaptive noise estimation tech-
niques, and exploring more sophisticated state-space models
for fMRI signals.

VI. CONCLUSION

We presented a Bayesian filtering framework for fMRI data
streams that enables effective integration with RF control
loops. Our approach provides significant improvements in
signal quality while maintaining the low latency required for
real-time applications. The framework includes both causal
(Kalman filter) and non-causal (Gaussian smoothing) compo-
nents, allowing for optimal filtering in both real-time and post-
processing contexts.

By improving the quality of fMRI signals in real-time, our
approach enhances the potential of fMRI-based neurofeed-
back, brain-computer interfaces, and adaptive neuroimaging
paradigms. The computational efficiency of our implemen-
tation ensures practical applicability in typical neuroimaging
setups.
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