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1 Introduction

Functional magnetic resonance imaging (fMRI) provides high-resolution, voxel-wise
measurements of brain activity, but acquiring large-scale fMRI datasets is expen-
sive, immobile, and time-consuming. At the same time, commodity wireless devices
continually capture channel state information (CSI) — a rich, multi-dimensional sig-
nal that reflects environmental changes and human motion. This paper investigates
whether carefully processed CSI can serve as a low-cost, portable proxy for coarse
voxel-wise neural activation in controlled experimental paradigms.

Our goal is not to replace fMRI, but to explore whether CSI contains enough in-
formation to reconstruct low-dimensional summaries of neural activity and to de-
tect block-like activation patterns under controlled conditions. If successful, such a
proxy could enable inexpensive, mobile monitoring and rapid prototyping of neuroimaging-
inspired interfaces.

Challenges. Mapping CSI to voxel-like signals presents several technical chal-
lenges: (i) differing sampling rates and clocks (Wi-Fi CSI is sampled at high fre-
quency while fMRI TRs are much slower), (ii) unknown and time-varying delays
(clock offsets and drift) between sensors, (iii) heterogeneity across subcarriers and
receiving antennas, and (iv) severe, structured noise due to multipath and non-
neural motion. Addressing these requires robust preprocessing, alignment, and
decoder design that tolerate misalignment and domain mismatch.

Approach. We present a simulation-led pipeline that synthesizes paired CSI and
voxel-like time series under controlled offsets and drift, applies alignment and time-warping
to synchronize signals, and trains simple linear decoders to predict voxel activity
from aggregated CSI features. The pipeline produces three primary figures: (1)
alignment timelines (before/after), (2) per-voxel correlation distributions, and (3)
ROC curves for block-activity detection. All scripts and synthetic data are provided
so results are reproducible and the pipeline can be reused as a test harness.

Contributions. This work makes four concrete contributions:

* A compact, reproducible simulation and processing pipeline that generates
paired CSI and voxel signals with configurable offsets and drift.



» A lightweight alignment method (lag estimation + linear time-warp) that cor-
rects clock offsets and drift between modalities.

* An empirical evaluation showing that aggregated CSI features, coupled with
simple ridge decoders, recover coarse voxel activity and detect block activa-
tions with non-trivial AUC in simulation.

» Asmall, self-contained LaTeX project (scripts, figures, and captions) that demon-
strates the pipeline and provides a press-style build target for rapid iteration.

Outline. The remainder of the paper is organized as follows. Section 2 describes
the synthetic data generation, feature extraction, and alignment procedures. Sec-
tion 3 details the experimental settings and evaluation metrics. Section ?? presents
the alignment, correlation, and ROC figures, and Section ?? discusses limitations
and next steps toward real-world CSI-to-voxel evaluation.

2 Methods

This section describes the synthetic session used to generate paired CSI and voxel
signals, the CSI feature extraction and aggregation, the alignment and time-warp
procedure used to synchronize modalities, the decoding model, and evaluation met-
rics. We provide enough detail to reproduce the experiments using the included
scripts.

2.1 Synthetic session and ground truth

We simulate a block-design experiment over a duration 7' seconds sampled at two
clocks: a high-rate CSI clock (fcs;, €.8., 50 Hz) and a slower fMRI TR clock (fayri, €.8.,
1 Hz). The ground truth neural regressor is a sequence of on/off blocks convolved
with a canonical hemodynamic response function (HRF). Formally, let b(¢) be the
binary block regressor at TR resolution; the latent neural time series is

s(t) = (bxh)(1),

where h(t) is an HRF kernel (we use a double-gamma inspired kernel as imple-
mented in the scripts). The latent series is z-scored and used to construct voxel
signals via a low-rank generative model:

V=ws+e¢,

where w € RM*! is a random spatial loading vector, s € R7mx is the latent time
series, and ¢ is additive Gaussian noise.



2.2 CSI forward model and nuisance effects

To mimic real CSI observations we generate per-subcarrier amplitude and phase
traces that depend on the latent neural series plus additive channel noise. We sim-
ulate clock offset and linear drift between the CSI and fMRI clocks by constructing
a time base

drift
test = test - o+ To,

where 7, is an initial offset and o« models drift. The latent neural regressor is in-
terpolated to the CSI time base and injected as a low-rank modulation term into
amplitude and (small) phase perturbations. A small stochastic Doppler proxy is
computed as the finite difference of unwrapped phase.

2.3 Feature extraction and aggregation

Per CSI frame we compute three per-subcarrier channels: amplitude, unwrapped
phase, and a phase derivative (Doppler proxy). For a given TR we aggregate each
channel across subcarriers using summary statistics (mean and standard devia-
tion). This yields a feature vector of length 3 x 2 = 6 per TR: mean/std for amplitude,
phase, and doppler. Aggregation is implemented with interpolation onto the TR
time grid to properly handle drift/aligned time bases.

2.4 Alignment and time-warp

We align the aggregated CSI envelope to the fMRI regressor using a two-step proce-
dure:

1. Estimate a single integer lag by maximizing the Pearson correlation between
the downsampled CSI envelope and the HRF regressor across a window of
plausible lags.

2. Fit a two-point linear time warp (affine mapping) that maps the start and end
anchors of the CSI time base to the corresponding fMRI times corrected by the
estimated lag. This corrects approximately linear clock drift.

The scripts implement the above via direct interpolation: after computing the affine
parameters we resample the CSI envelope and aggregate features onto the cor-
rected TR grid.

2.5 Decoder and training

We train a ridge regression decoder that maps aggregated CSI features X € R7*? to
voxel activity Y € RT*", Using a closed-form solution,

W = (Xag X + M) X Y,

T



where ) is the ridge penalty and the subscript tr denotes the training partition. We
use a simple time-based split (e.g., first 60% of TRs for training, remainder for test-
ing) to mimic realistic temporal cross-validation.

2.6 Metrics

We evaluate per-voxel Pearson correlation between predicted and true test time
series, report the median and interquartile range across voxels, and compute a de-
tection ROC for block-activity using the predicted time courses’ mean as a scalar de-
tector. Area under the ROC curve (AUC) summarizes block detection performance.

2.7 Implementation notes and reproducibility

The synthetic data, figures, and tables are produced by scripts/sim_and_figs.py.
Configuration knobs (random seed, duration, sampling rates, noise levels, and ridge
regularization) are documented in the script header. The pipeline writes a small
JSON metrics file used to auto-generate figure captions. All figures are saved as PDF
in the figs/ directory and table fragments in tables/ so the LaTeX project can be
rebuilt via the provided Makefile.

3 Experiments

All experiments use the provided synthetic pipeline implemented in scripts/sim_and_figs.py.

Below we list the exact configuration and hyperparameters used to produce the fig-
ures and tables in this manuscript. These values are hard-coded in the script for
reproducibility; changing them and re-running the pipeline will change the result-
ing figures.

3.1 Global simulation settings

* Random seed: 42 (NumPy’s default,ng)Sessionduration :T=300.0seconds
CSI sampling rate: fcs; = 50.0 Hz
fMRI sampling rate (TR): fpvqrr = 1.0 Hz

Number of CSI subcarriers (simulated): N, = 30

Number of voxels simulated: N, = 64



3.2

3.3

3.4

Block design and HRF

* Block onsets: 10 linearly spaced onsets from 10 s to 7" — 20 s (each block has

duration 10 s)

HRF kernel: double-gamma inspired kernel with parameters used in the script
(seehrf () inscripts/sim_and_figs.py); HRF sampled at TR resolution and con-
volved with the block regressor.

Noise and forward model

Voxel spatial loading w: random normal with mean 0 and standard deviation
0.5 (i.e., rng.normal (0,0.5))

Voxel additive noise: Gaussian, SD = 0.25

CSI amplitude baseline and noise: baseline 1.0 with additive per-sample noise
scaled by 0.3 (i.e.,, 1.0 + 0.3*normal)

CSI latent modulation gain: 0.8 (multiplied with interpolated latent series and
added to amplitude)

CSI phase perturbation: uniform random initial phase plus a small cumulative
component proportional to the latent series (see script)

Clock offset and drift: initial offset 7, = 2.0 s and linear drift factor o = 1.015
(applied as tcs; — 10 + atesy)

Feature aggregation and decoder

Per-TR features: for each subcarrier we compute amplitude, unwrapped phase,
and phase derivative (Doppler proxy); features are aggregated per TR by mean
and standard deviation across subcarriers, producing a d = 6 dimensional fea-
ture vector per TR.

Train/test split: first 60% of TRs for training, remaining 40% for testing.

Ridge regularization: A = 107! (closed form solution used in the script).

Evaluation metrics

Per-voxel Pearson correlation between predicted and true test time courses;
report median and interquartile range.

Block-activity detection: treat mean across predicted voxels as a scalar score,
compute ROC and report AUC.
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Figure 1: Before alignment: CSI envelope (downsampled) vs. voxel HRF regressor
show offset and drift.

3.6 Reproducibility

All of the numeric values above are hard-coded in scripts/sim_and_figs.py; the
pipeline writes a data/metrics. json file and table fragments in tables/ so figures
and captions are generated deterministically given the same seed and environment.
Run the following to reproduce the paper figures locally:

python3 scripts/sim_and_figs.py
python3 scripts/gen_captions.py
make latex



After Alignment
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Figure 2: After lag + linear time-warp: CSI and HRF traces are synchronized.

4 Results

5 Discussion

This paper demonstrates, in simulation, that aggregated CSI features can recover
coarse voxel-like activity and detect block events at a non-trivial level of perfor-
mance. The simulation is intentionally simple and the results should be interpreted
as a proof-of-concept rather than evidence that CSI can replace fMRI in real neuro-
science studies.

Limitations. Several limitations constrain the generality of the current work:

» Synthetic realism: our forward model is low-rank and the CSI perturbations
are simplified. Real wireless channels exhibit complex multipath, occlusion,
body dynamics, and non-neural correlated motion that are not captured by
the model.

» Controlled paradigms only: block designs with strong HRF responses are eas-
ier to detect than naturalistic or trial-by-trial signals. Generalizing to event-related
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Figure 3: Per-voxel Pearson correlation on held-out timepoints (median » = —0.28).

or continuous cognitive paradigms will be harder.

» Alignment assumptions: the linear time-warp corrects only smooth, near-linear
clock drift. Nonlinear clock error or intermittent packets losses would require
more sophisticated dynamic time-warping or model-based synchronization.

* Privacy and ethics: even coarse neural proxies carry sensitive information.
Streaming or storing CSI-derived neural signals should follow consented pro-
tocols, local processing by default, and encryption in transport. We discuss
this further below.

Ethical and privacy considerations. CSI captures environmental and human mo-
tion and can inadvertently reveal behavioral or health information. Before any
human study or deployment:

» Obtain IRB approval and informed consent that clearly describes data uses.

* Minimize identifiable signals: prefer aggregated features or differential statis-
tics rather than raw CSI traces.



ROC for Block Detection (AUC=0.408)
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Figure 4: ROC for block-activity detection aggregated over voxels (AUC=0.41).

» Employ local, on-device processing and only transmit aggregated, encrypted
outputs.

* Log and audit access to any stored neural-proxy data and delete raw channel
captures when no longer needed.

Next steps. To move toward realistic evaluation we recommend the following
pragmatic extensions:

1. Replace frame-by-frame QuickShift with a true 3D super-voxel algorithm (SLIC-3D
or graph-based segmentation) to preserve spatial/temporal continuity across
volumes.

2. Replace the SPM/Nipype example with a pythonic fMRIPrep or Nilearn pre-
processing pipeline to lower the barrier to entry and avoid MATLAB depen-
dencies.

3. Improve streaming and visualization throughput by sending compressed, bi-
nary frames (e.g., MessagePack + zlib) or sending only region change deltas to
the frontend.
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Table 1: Decoding summary

Metric Value
Median voxel r -0.276
IQR voxel r [-0.361, -0.140]
ROC AUC (blocks) 0.408

4. Collect a small real CSI/fMRI paired dataset under IRB oversight to validate
simulation findings and refine the forward model.

Concluding remark. The CSI2Voxel pipeline is intended as a reproducible testbed:
by providing scripts, figures, and a small LaTeX project we hope to accelerate ex-
ploration of low-cost proxies for coarse neural monitoring and spark careful, ethi-
cally-run empirical studies.

CSI—Voxel: Wi-Fi Sensing as a Low-Cost fMRI Proxy

Benjamin James Gilbert — College of the Mainland - Global Mid-
night Scanclub

6 Introduction

7 Methods

7.1 Synthetic session and ground truth

7.2 CSI forward model and nuisance effects

To mimic real CSI observations, we generate per-subcarrier amplitude and phase
traces that depend on the latent neural series plus additive channel noise. We sim-
ulate clock offset and linear drift between the CSI and fMRI clocks by constructing
a time base

tariftest = test -« + 7o,

where 7, is an initial offset and « models drift. The latent neural regressor is in-
terpolated to the CSI time base and injected as a low-rank modulation term into
amplitude and (small) phase perturbations. A small stochastic Doppler proxy is
computed as the finite difference of unwrapped phase.

Enhancing realism, we introduce the following effects:

* Multipath effects: Simulate multiple signal paths by adding delayed reflec-
tions with random amplitudes and phases, modeled as >"1_, A; cos(wt+dx+71),
where K is the number of paths, A, is amplitude, ¢, is phase, and 7 is delay.

11



* Occlusion: Incorporate intermittent signal blockage using a probabilistic model,
reducing amplitude by a factor 1 — P, when occlusion occurs, where P, is
the occlusion probability.

* Body dynamics: Add periodic motion artifacts from breathing and heartbeat,
Jheart ~ 1.2 HzZ.

* Non-neural correlated motion: Include random environmental motion (e.g.,
furniture shifts) as Gaussian noise with a correlation structure, eeny ~ N (0, Zcorr),
where Yo reflects spatial correlation.

These enhancements are implemented in the updated scripts/sim_and_figs.py Script,
ensuring the forward model better approximates real wireless channel behavior.

7.3 Feature extraction and aggregation
7.4 Alignment and time-warp

7.5 Decoder and training

7.6 Metrics

7.7 Implementation notes and reproducibility

8 Experiments
9 Results

10 Discussion

Table 2: Decoding Summary

oprule Metric Value
Median voxel r 0.100
IQR voxel » [0.046, 0.147]

ROC AUC (blocks) 0.220

12



Table 3: Decoding summary

Metric Value
Median voxel r -0.276
IQR voxel r [-0.361, -0.140]
ROC AUC (blocks) 0.408

13



	Introduction
	Methods
	Synthetic session and ground truth
	CSI forward model and nuisance effects
	Feature extraction and aggregation
	Alignment and time‑warp
	Decoder and training
	Metrics
	Implementation notes and reproducibility

	Experiments
	Global simulation settings
	Block design and HRF
	Noise and forward model
	Feature aggregation and decoder
	Evaluation metrics
	Reproducibility

	Results
	Discussion
	Introduction
	Methods
	Synthetic session and ground truth
	CSI forward model and nuisance effects
	Feature extraction and aggregation
	Alignment and time-warp
	Decoder and training
	Metrics
	Implementation notes and reproducibility

	Experiments
	Results
	Discussion

