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Abstract—We integrate a DOMA motion head into an RF
tracking stack to forecast next-position and short-horizon tra-
jectories from spectral/angle features. A variance-aware fusion
with a kinematic filter yields stable paths under SNR variation.
We document latency, accuracy, and analytics (speed, heading,
curvature, dwell, and route identity).

I. INTRODUCTION

We study real-time RF target motion from opportunistic
signals where bearings, ranges, or Doppler cues are noisy and
intermittent. We integrate a DOMA motion model to forecast
next-position and a short trajectory, then fuse with a kinematic
filter for temporal consistency under varying SNR and dropouts.
We report latency budgets and analytics useful for operations.

II. BACKGROUND

Classical RF tracking relies on kinematic filters (e.g.,
constant-velocity CV, constant-turn CT, or interacting multiple
model IMM) driven by DOA/TDOA features. Learning-based
forecasters (seq2seq, temporal CNNs, attention) can exploit
richer context but must be variance-aware to avoid unstable
paths at low SNR. DOMA augments encoders with motion-
attentive heads that operate over recent latent history to output
displacement distributions.

ITII. METHOD
A. Inputs and Encoder

At time t we observe a feature window z; € RY (e.g.,
DOA posterior mean, spectral centroid, channel features). A
lightweight encoder ¢(-) yields a latent h;.

B. DOMA Motion Head

The DOMA head attends over {h;_11,...,h;} and outputs
a mean p and covariance XA for the next-step displacement
Ax; = (Az, Ay). For a K-step horizon we roll the head with
teacher-forcing during training and open-loop at test.
C. Variance-Aware Fusion

We fuse the DOMA proposal x,(:f,lr)l = x; + pp with a

kinematic filter proposal xgi)l using inverse-variance weighting:

—1
Rop1 = (2;1 T 2;1) (Z;lng_)l i zglxgi?l). )

Uncertainty gates the DOMA path: if tr(X;) exceeds a
threshold, we downweight its contribution.

TABLE I: Ablation: DOMA-only vs kinematic-only vs fused.

Model ADE@1  p95 latency
Kinematic-only 3.8m 9.1ms
DOMA-only 3.5m 7.9 ms
Fused (ours) 3.1m 8.3 ms

IV. FORECAST HEAD AND ANALYTICS
A. Trajectory Head

We parameterize the K -step trajectory by planar deltas and
accumulate to positions. Training uses a Huber loss on positions
and a KL term to align DOMA covariances with empirical
residuals.

B. Analytics

From the fused trajectory {X:.;} we derive: speed, heading,
curvature, dwell time in AOIs, and route identity via sequence
hashing. These feed real-time triage without extra models.

V. EXPERIMENTS
A. Setup

We generate sequences with mixed regimes (straight, turns,
loiters) and inject SNR sweeps and dropout bursts. Metrics: 1-
step RMSE (ADE@1), ADE over K=5, FDE@5, and latency
p50/p95 end-to-end.

VI. RESULTS

Accuracy. Our DOMA+fusion yields 1-step RMSE 3.1 m,
ADE@5 6.8m, FDE@5 10.5m, improving 18.4 %vs. the
kinematic-only baseline.

Latency. End-to-end p50 is
25 Hzupdates within the 2.0 shorizon.

4.1ms, p95 8.3msat

VII. ABLATIONS
A. Ablations

(i) DOMA only vs. kinematic only vs. fused (ours); (ii)
gating by DOMA variance threshold; (iii) horizon length K;
(iv) encoder history length L. Fused tracking is most stable
at low SNR, and variance gating reduces overshoot during
manoeuvres.
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Fig. 1: System layout: RF observations are encoded to features,
DOMA predicts next-step and short-horizon deltas; a variance-
aware fusion with a kinematic filter yields the trajectory;
analytics summarize behavior.
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TABLE II: Headline metrics (auto-filled).

Metric Value Note

ADE@1 3.1m 1-step RMSE
ADE@5 6.8 m Avg. displacement (5 steps)
FDE@5 10.5m  Final displacement (5 steps)
pS0 latency  4.1ms end-to-end

p95 latency  8.3ms end-to-end

VIII. OPERATIONAL NOTES

Serving. We batch across tracks per tick and cap horizon
on overload to preserve p95. DOMA head runs fp16; the filter
stays on CPU to keep memory bounded.

Telemetry. We emit ADE@1, ADE@35, and gating rates per
track class, with drift alerts if ADE@1 exceeds a rolling 95th
percentile.

IX. RELATED WORK

We build on classical filters (Kalman, IMM) and sequence
forecasting with attention. Our contribution is a practical
variance-aware fusion of a DOMA head with a kinematic
proposal tailored to RF features under tight latency budgets.

X. CONCLUSION

DOMA-based motion forecasting, fused with a kinematic
proposal, yields accurate and stable RF trajectories at low
latency. Future work includes multi-emitter data association
and joint SNR-aware training.
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TABLE III: Trajectory analytics returned per track.

Field Units
speed m/s
heading deg
curvature 1/m
dwell_time_aoi s
route_id string
confidence [0,1]
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Fig. 2: Trajectory error vs. forecast horizon. Maximum infer-
ence budget is 8.3 ms.
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