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Abstract—We present a lightweight SpectrumEncoder for
compressing FFT power spectra using multi-head linear attention
(MHLA) with FlashAttention backends and token-dropout. We
report compression–accuracy trade-offs, latency profiles, and an
ablation on Rotary Positional Embeddings (RoPE). The method is
designed for real-time SIGINT pipelines where millisecond-level
latency and energy budgets matter, enabling up to 40% more
concurrent RF bands on the same hardware.

I. INTRODUCTION

RF monitoring stacks must compress and interpret high-
rate spectra under tight latency and power budgets. We target
the common case where the front-end produces windowed
FFT power spectra (magnitude-only) and the back-end must
(1) compress to a compact token sequence for downstream
classifiers, and (2) preserve class-relevant detail. We explore
multi-head linear attention (MHLA) with FlashAttention-style
backends and token-dropout as a simple, hardware-friendly
compressor.

Modern RF environments present increasingly complex
challenges beyond basic compression and classification. Emerg-
ing threats include “ghost” anomalies—stealthy emissions,
frequency-hopping signals, and sophisticated spoofing at-
tacks—that evade traditional detection methods. These chal-
lenges are exacerbated in tactical edge deployments where
resource constraints limit processing capabilities. Our work
addresses these challenges by enabling:

• Multi-modal intelligence fusion: Compressed RF rep-
resentations that maintain coherence with other sensor
modalities (visual, acoustic)

• Scalable band monitoring: Processing up to 40% more
concurrent frequency bands on the same hardware through
efficient compression

• Distribution-aware learning: Adaptive positional encod-
ing via dynamic-θ RoPE to address signal characteristic
variations across diverse bands (ISM, cellular, GNSS,
aero)

We contribute: (1) an analysis of compression–accuracy
trade-offs using token-dropout in RF spectrum encoding; (2)
latency profiles across attention backends with varying token
counts; (3) an ablation study on positional encoding schemes;
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Fig. 1: System architecture of the SpectrumEncoder with
token-dropout, FlashAttention MHLA, and integrated anomaly
detection within a complete SIGINT pipeline.

and (4) integration of anomaly detection capabilities without
significant latency increases. Figure 1 presents the overall
architecture of our SpectrumEncoder system and its integration
into a complete SIGINT pipeline.

II. BACKGROUND

FlashAttention & Linear Attention. FlashAttention variants
reduce memory traffic for attention kernels; linear attention
further reduces quadratic costs. In high-rate RF spectrum
processing, where token sequences can exceed 1024 bins
per processing window, naive attention mechanisms (O(n2)
complexity) become prohibitively expensive for real-time
applications. FlashAttention achieves its efficiency through
IO-aware tiling and recomputation strategies that minimize
SRAM/HBM transfers. For RF spectra with their distinct
statistical properties (often sparse in active energy), this
approach proves especially effective, reducing latency by 2-3×
compared to vanilla attention mechanisms.

Rotary Positional Embeddings (RoPE). RoPE injects
relative position via complex rotations, often improving ex-
trapolation. In RF contexts, positional information carries
critical frequency relationships that standard approaches may
not adequately capture. We explore three variants:
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Fig. 2: Pipeline: SDR → STFT → SpectrumEncoder (token-
dropout + MHLA) → heads.

• None: No positional encoding, serving as our baseline.
• Static: Fixed θ = 104, the conventional approach.
• Dynamic: Learned θ per frequency band, optimized via

AdamW with lr = 2× 10−4.
Dynamic-θ RoPE adapts to spectral characteristics across
heterogeneous RF bands, offering improved performance on
signals with varying time-frequency structures.

Token-Dropout. We drop a proportion r of lowest-energy
bins (or a learned saliency proxy) prior to attention, trading
fidelity for speed and energy. Unlike traditional techniques
that apply fixed-rate dropout, we implement a Gumbel-based
differentiable approach where dropout is trainable end-to-end:

xkept = x⊙ σ

(
logα(x) + g

τ

)
(1)

where α(x) is a learned energy/saliency function, g is a
Gumbel noise sample, and τ is the temperature parameter.
This approach enables more stable training while allowing
hardware-aware token retention policies.

Grouped-Query Attention. As an extension to standard
multi-head attention, grouped-query attention reduces memory
requirements by sharing key-value heads while maintaining
separate query heads. For spectrum encoding, this technique
offers memory savings with minimal accuracy impact. We
implement this with num_kv_heads=2 while keeping 8
query heads, achieving approximately 2.5× memory reduction
compared to full MHA.

Anomaly Detection in RF Spectra. Anomaly detection
for RF signals traditionally relies on statistical approaches or
dedicated models. Recent work has explored reconstruction
error as an effective anomaly indicator. Our approach integrates
detection directly into the SpectrumEncoder pipeline, using
compressed representations to identify deviations from expected
patterns with minimal additional computation.

III. METHOD

1) Gumbel Token-Dropout: We relax hard dropout via
Gumbel-top-k on token energies ei: ẽi = ei + gi, gi ∼
Gumbel(0, 1); select top-M = (1−r)N . At train time we use
the straight-through estimator; at eval we apply hard top-M .
Gumbel improves accuracy by 1.3 pp at r = 0.25.

A. Anomaly Detection & Integration

B. Anomaly Detection

We extend the SpectrumEncoder to detect anomalous RF
signals directly from compressed representations. This enables
identification of unusual RF signatures (e.g., “ghost” anomalies

like spoofing or stealth emissions) without requiring a sepa-
rate processing pipeline, preserving millisecond-level latency
budgets critical for SIGINT applications.
Anomaly Scoring Mechanism. The SpectrumEncoder’s com-
pressed tokens already preserve class-relevant features; we
leverage this by adding a lightweight anomaly detection head:

sanomaly = σ (W2 · ReLU(W1 · mean(xencoded))) (2)

where σ is the sigmoid function, W1 ∈ Rd×64 and W2 ∈ R64×1

are learnable parameters, and xencoded represents the encoded
token sequence. This approach requires minimal additional
compute while providing per-spectrum anomaly scores.
Differentiable Training with Gumbel Residuals. To train the
anomaly detector alongside the encoder, we utilize residuals
from the GumbelTokenDropout:

Lanomaly = MSE(xreconstructed, xoriginal)+α·BCE(sanomaly, yanomaly)
(3)

where α balances reconstruction quality with anomaly detec-
tion accuracy, yanomaly are ground-truth labels, and BCE is
binary cross-entropy loss. This formulation allows end-to-end
optimization without compromising compression efficiency.
Threshold-based Flagging. In inference, we flag anomalies
when sanomaly > τ (typically τ = 0.05), with minimal impact
on latency (<2ms additional p50). The system logs metadata
(timestamp, frequency band, anomaly score) for each detection,
enabling tracking of intermittent or evolving threats.

IV. EXPERIMENTS

A. Data

We use sliding-window spectra produced from IQ with
Hann windows; bands include ISM, cellular, GNSS, and aero.
Labels use a mix of heuristics and operator-verified annotations.
For anomaly detection experiments, we synthesize a corpus
of “ghost” signals by injecting controlled perturbations (e.g.,
frequency shifts, selective band erasure, and spoofing) into
clean spectra, creating paired normal/anomalous examples.

B. Metrics

We report accuracy, compression ratio (N/M ), and latency
(p50/p95) measured end-to-end on the encoder path. For
anomaly detection, we evaluate using precision, recall, and F1
score. We also measure energy consumption in mJ per spectrum
on both desktop and edge hardware to quantify operational
efficiency.

C. Backends

We benchmark FlashAttention, grouped-query attention, and
a simple baseline MHA implementation. For grouped-query
attention, we maintain 8 query heads while using only 2
key-value heads (num_kv_heads=2), substantially reducing
memory footprint.



D. RoPE Settings

None, static θ, and dynamic learned θ. Token-dropout rates
r ∈ {0, 0.25, 0.5}. For dynamic θ, we optimize per frequency
band using AdamW with learning rate 2×10−4, allowing the
model to adapt positional encoding strength to each band’s
unique characteristics.

E. Dropout Policies

We compare fixed-rate dropout (selecting lowest-energy
tokens) with Gumbel-based differentiable dropout, where the
saliency function is learned end-to-end. For the Gumbel
approach, we use temperature τ = 1.0 initially, with annealing
to τ = 0.1 over 100 epochs to promote discrete decisions at
inference time.

F. Anomaly Detection Configuration

For anomaly experiments, we implement a lightweight
detector using a 3-layer MLP (hidden dimension 64) with
sigmoid output. We train using binary cross-entropy loss with
a weighted α = 0.3 to balance classification and anomaly
objectives. At inference, we use a threshold τ = 0.05 to flag
anomalies.

G. Implementation Details

Unless noted, N=1024 bins per spectrum (Hann, 50%
overlap); tokens formed by striding 4 with max-pool. Token-
dropout selects the lowest-energy tokens (entropy-tie break).
Batch size 64, AdamW, lr 2×10−4. Latency measured end-to-
end (encode only) with 100 warmup iters + 1000 eval iters;
we report p50/p95.

H. Hardware

All latency runs on a single workstation (CPU: 16C/32T;
GPU: RTX-class); FlashAttention kernel enabled where appli-
cable. For edge deployment testing, we additionally benchmark
on a Jetson Nano (4GB) to validate real-world performance in
resource-constrained environments.

I. Interaction Studies

To understand the combined effects of our techniques,
we conduct a 3×3×3 factorial study: RoPE (None, Static,
Dynamic), dropout (r=0, 0.25, 0.5), and backend (Flash,
Grouped, Baseline). This comprehensive evaluation reveals
interaction effects that might be missed in single-variable
ablations.

V. RESULTS

Compression–accuracy. Across r ∈ {0, 0.25, 0.5} and RoPE
settings, the Pareto point occurs at 1.33× with 91.40% accuracy
using r = 0.25 (Fig. 3). This represents an optimal balance
between compression efficiency and classification performance,
allowing more efficient processing without sacrificing signal
characterization accuracy. The dynamic-θ RoPE variant con-
tributes significantly to maintaining high accuracy even at
increased compression ratios.
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Fig. 3: Compression vs accuracy. Best trade-off: 91.40% at
1.33x with token-dropout r = 0.25.
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Fig. 4: Latency vs token count for Flash, grouped, and baseline
attention. p50 latency at 128 tokens: 24.6 ms.

Latency scaling. FlashAttention achieves the best slope with
token count (Fig. 4); at 128 tokens we see 24.6 ms p50 end-
to-end encoder latency. The grouped-query attention imple-
mentation provides a middle ground, offering 2.5× memory
savings compared to the baseline while maintaining latency
within 30% of FlashAttention. This makes grouped-query
particularly suitable for memory-constrained edge deployments
where latency requirements are slightly more relaxed.
RoPE ablation. Dynamic-θ improves accuracy by 2.6 pp over
no position encoding (Fig. 5). Static RoPE performs between
the two. We observe larger gains at higher dropout rates (not
shown). The improved performance of dynamic-θ RoPE is
particularly notable in heterogeneous band environments, where
signal characteristics vary significantly between ISM, cellular,
GNSS, and aero bands. By adapting θ values per band, the
model better captures relevant positional relationships specific
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Fig. 5: RoPE ablation: accuracy versus positional scheme.
Dynamic-θ yields 2.6 pp absolute over none.

Metric Value Notes

Best Accuracy 91.40% With RoPE dynamic-θ
Compression 1.33× At token-dropout r = 0.25
p50 Latency 24.6 ms At 128 tokens

TABLE I: Summary of key performance metrics for
SpectrumEncoder with FlashAttention.

to each frequency range.
Anomaly Detection. Our integrated anomaly detection ap-
proach achieves 0.85 F1 score at the optimal compression
ratio of 1.33× (Fig. 6), with only 2ms additional latency
overhead. As compression increases beyond 1.5×, detection
accuracy declines more rapidly, suggesting a threshold beyond
which critical signal features for anomaly identification are
lost. The minimal latency impact demonstrates the efficiency
of our design, making it viable for real-time threat detection
in resource-constrained environments.
Hardware Scaling. The SpectrumEncoder maintains high
performance across diverse hardware platforms (Fig. 8). Our
edge GPU implementation (Jetson Nano) achieves 52.3ms
p50 latency—near the real-time threshold of 50ms—while
maintaining 90.2% accuracy. This represents a 2.1× latency
increase from the workstation configuration but with just 1.2
percentage points accuracy drop, demonstrating robust edge
deployment capabilities. The CPU-only configuration, while
functional, exceeds practical real-time thresholds at 118.7ms.
Dropout Policy Ablation. Table II demonstrates the advantages
of Gumbel-based differentiable dropout over fixed-rate policies.
At r = 0.25, Gumbel dropout achieves 1.3 percentage points
higher accuracy while exhibiting lower loss variance during
training and faster convergence (14 fewer epochs). These
benefits become even more pronounced at r = 0.5, where
the Gumbel approach maintains reasonable accuracy (88.5%)
while fixed-rate dropout suffers from increased instability and
significantly longer convergence times.

Fig. 6: Anomaly ROC/PR (5 runs, mean ± 1 s.d.). At τ=0.05
we report F1=0.85.

Dropout Policy Accuracy Loss Var. Convergence

r = 0 — 89.2% 0.021 87 epochs
r = 0.25 Fixed 90.1% 0.034 92 epochs
r = 0.25 Gumbel 91.4% 0.027 78 epochs
r = 0.5 Fixed 86.3% 0.052 110+ epochs
r = 0.5 Gumbel 88.5% 0.038 95 epochs

TABLE II: Comparison of token-dropout policies, showing
Gumbel-based dropout’s advantages in accuracy, training
stability (lower loss variance), and convergence speed.

Interaction Effects. Our 3×3×3 factorial study reveals several
key interactions between RoPE variants, dropout rates, and
attention backends. Most notably, dynamic-θ RoPE shows
synergistic effects with Gumbel dropout at r = 0.25, yielding a
3.1 percentage point accuracy boost over static RoPE (compared
to 2.6 points in isolation). Conversely, at r = 0.5, grouped-
query attention shows better resilience than FlashAttention
when combined with dynamic-θ RoPE, likely due to its
regularizing effect from shared key-value heads.
Operational Impact. The achieved 1.33× compression at
24.6 ms p50 latency enables processing multiple concurrent
RF channels on edge-class hardware. Specifically, this config-
uration allows us to run up to 40% more simultaneous bands
on resource-constrained devices compared to uncompressed
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Fig. 7: Anomaly detection performance vs. compression ratio,
showing F1 score and latency impact. Best trade-off occurs at
1.33× compression with 0.85 F1 score and only 2ms additional
latency.

approaches without sacrificing classification accuracy. When
combined with our anomaly detection capabilities, the system
provides comprehensive real-time signal intelligence with min-
imal additional compute overhead, enhancing threat detection
in tactical edge deployments.
Energy Efficiency. Energy measurements reveal the
SpectrumEncoder’s efficiency advantages, with compression
significantly reducing power consumption. At r = 0.25, the
model requires 12.8mJ per spectrum on the workstation GPU
and 18.2mJ on the Jetson Nano—representing 27% and 31%
reductions, respectively, compared to uncompressed baseline
approaches. This translates directly to extended battery life
in mobile deployments and reduced thermal management
requirements.

a) Limitations & Ethics.: Gumbel dropout exhibits in-
stability at r ≥ 0.5; anomaly F1 is measured on synthetic
ghost patterns and may overstate field performance. Energy
estimates vary with kernel versions and GPU clocks. We target
monitoring/defense uses; misuse for mass surveillance is out
of scope and discouraged.

VI. RELATED WORK

We build on FlashAttention [1] and linear attention [2] for
efficient kernels, token pruning/pruning literature [3], [4] for
adaptive sequence length, and RoPE [5] for positional encoding.
Prior RF works compress spectra via fixed pooling [6], PCA
[7], or wavelet transforms [8]; our token-dropout+MHLA aims
for a better latency–utility balance.

Recent work on progressive token pruning [9] shares
conceptual similarities with our approach but focuses on NLP
rather than RF spectrum data. The computational efficiency
gains from FlashAttention [10] are particularly relevant for
our resource-constrained edge deployment scenarios, where we
observe 2-3× speedups over vanilla attention implementations.
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Fig. 8: SpectrumEncoder performance across hardware plat-
forms. While the workstation configuration achieves 24.6 ms
p50 latency, even the edge GPU implementation is near the
real-time threshold (50ms) with minimal accuracy degradation.

VII. CONCLUSION

Token-dropout combined with MHLA provides a simple,
effective compressor for FFT spectra, with controllable latency.
RoPE improves accuracy in most settings; dynamic-θ is
promising under distribution shift. Future work includes on-
device distillation and learned dropout policies driven by utility.
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