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Abstract—We present a lightweight SpectrumEncoder for
compressing FFT power spectra using multi-head linear attention
(MHLA) with FlashAttention backends and token-dropout. We
report compression–accuracy trade-offs, latency profiles, and an
ablation on Rotary Positional Embeddings (RoPE). The method is
designed for real-time SIGINT pipelines where millisecond-level
latency and energy budgets matter.
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I. INTRODUCTION

RF monitoring stacks must compress and interpret high-
rate spectra under tight latency and power budgets. We target
the common case where the front-end produces windowed
FFT power spectra (magnitude-only) and the back-end must
(1) compress to a compact token sequence for downstream
classifiers, and (2) preserve class-relevant detail. We explore
multi-head linear attention (MHLA) with FlashAttention-style
backends and token-dropout as a simple, hardware-friendly
compressor.

II. BACKGROUND

FlashAttention & Linear Attention. FlashAttention variants
reduce memory traffic for attention kernels; linear attention
further reduces quadratic costs. Rotary Positional Embeddings
(RoPE). RoPE injects relative position via complex rotations,
often improving extrapolation. Token-Dropout. We drop a
proportion r of lowest-energy bins (or a learned saliency proxy)
prior to attention, trading fidelity for speed and energy.

III. METHOD

A. SpectrumEncoder

Given an N -bin power spectrum x ∈ RN , we form
tokens by striding and optional pooling. We then apply token-
dropout with rate r (by energy or entropy score), followed by
MHLA with a pluggable backend (Flash, grouped, or baseline).
Positional encoding uses RoPE, which we ablate by toggling
(none/static/dynamic-θ).

B. Token-Dropout Policy

We evaluate fixed-rate and energy-thresholded dropout. The
compressor emits M = (1− r)N tokens on average.

C. RoPE Ablation

We compare: None, Static (θ = 104), and Dynamic (learned
θ per band).

D. Complexity

Attention complexity scales with M ; token-dropout provides
a near-linear latency reduction.

IV. EXPERIMENTAL SETUP

A. Data

We use sliding-window spectra produced from IQ with Hann
windows; bands include ISM, cellular, GNSS, and aero. Labels
use a mix of heuristics and operator-verified annotations.

B. Metrics

We report accuracy, compression ratio (N/M ), and latency
(p50/p95) measured end-to-end on the encoder path.

C. Backends

We benchmark FlashAttention, grouped-query attention, and
a simple baseline MHA implementation.

D. RoPE Settings

None, static θ, and dynamic learned θ. Token-dropout rates
r ∈ {0, 0.25, 0.5}.

V. RESULTS

VI. RELATED WORK

We build on FlashAttention and linear attention for effi-
cient kernels, token pruning/pruning literature for adaptive
sequence length, and RoPE for positional encoding. Prior RF
works compress spectra via fixed pooling or PCA; our token-
dropout+MHLA aims for a better latency–utility balance.

VII. CONCLUSION

Token-dropout combined with MHLA provides a simple,
effective compressor for FFT spectra, with controllable latency.
RoPE improves accuracy in most settings; dynamic-θ is
promising under distribution shift. Future work includes on-
device distillation and learned dropout policies driven by utility.
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Fig. 1: Compression vs accuracy. Best trade-off: 91.40% at
1.33x with token-dropout r = 0.25.
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Fig. 2: Latency vs token count for Flash, grouped, and baseline
attention. p50 latency at 128 tokens: 50Ref ms.
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Fig. 3: RoPE ablation: accuracy versus positional scheme.
Dynamic-θ yields 2.6 pp absolute over none.


