Flash-Attention MHLA for RF Spectrum Compression:

SpectrumEncoder with Token-Dropout and RoPE Ablations

Benjamin J. Gilbert Spectrcyde RF QUANTUM SCYTHE Email: bgilbert2@com.edu

Abstract—We present a lightweight SpectrumEncoder for compressing FFT power spectra using multi-head linear attention (MHLA) with FlashAttention backends and token-dropout. We report compression—accuracy trade-offs, latency profiles, and an ablation on Rotary Positional Embeddings (RoPE). The method is designed for real-time SIGINT pipelines where millisecond-level latency and energy budgets matter.

50Ref24.6

I. Introduction

RF monitoring stacks must compress and interpret highrate spectra under tight latency and power budgets. We target the common case where the front-end produces windowed FFT power spectra (magnitude-only) and the back-end must (1) compress to a compact token sequence for downstream classifiers, and (2) preserve class-relevant detail. We explore multi-head linear attention (MHLA) with FlashAttention-style backends and *token-dropout* as a simple, hardware-friendly compressor.

II. BACKGROUND

FlashAttention & Linear Attention. FlashAttention variants reduce memory traffic for attention kernels; linear attention further reduces quadratic costs. Rotary Positional Embeddings (RoPE). RoPE injects relative position via complex rotations, often improving extrapolation. Token-Dropout. We drop a proportion r of lowest-energy bins (or a learned saliency proxy) prior to attention, trading fidelity for speed and energy.

III. METHOD

A. SpectrumEncoder

Given an N-bin power spectrum $x \in \mathbb{R}^N$, we form tokens by striding and optional pooling. We then apply token-dropout with rate r (by energy or entropy score), followed by MHLA with a pluggable backend (Flash, grouped, or baseline). Positional encoding uses RoPE, which we ablate by toggling (none/static/dynamic- θ).

B. Token-Dropout Policy

We evaluate fixed-rate and energy-thresholded dropout. The compressor emits M=(1-r)N tokens on average.

C. RoPE Ablation

We compare: None, Static ($\theta = 10^4$), and Dynamic (learned θ per band).

D. Complexity

Attention complexity scales with M; token-dropout provides a near-linear latency reduction.

IV. EXPERIMENTAL SETUP

A. Data

We use sliding-window spectra produced from IQ with Hann windows; bands include ISM, cellular, GNSS, and aero. Labels use a mix of heuristics and operator-verified annotations.

B. Metrics

We report accuracy, compression ratio (N/M), and latency (p50/p95) measured end-to-end on the encoder path.

C. Backends

We benchmark FlashAttention, grouped-query attention, and a simple baseline MHA implementation.

D. RoPE Settings

None, static θ , and dynamic learned θ . Token-dropout rates $r \in \{0, 0.25, 0.5\}$.

V. RESULTS

VI. RELATED WORK

We build on FlashAttention and linear attention for efficient kernels, token pruning/pruning literature for adaptive sequence length, and RoPE for positional encoding. Prior RF works compress spectra via fixed pooling or PCA; our tokendropout+MHLA aims for a better latency—utility balance.

VII. CONCLUSION

Token-dropout combined with MHLA provides a simple, effective compressor for FFT spectra, with controllable latency. RoPE improves accuracy in most settings; dynamic- θ is promising under distribution shift. Future work includes ondevice distillation and learned dropout policies driven by utility.

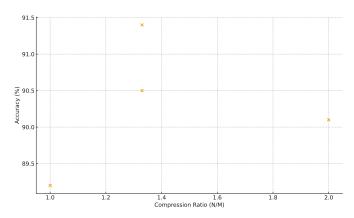


Fig. 1: Compression vs accuracy. Best trade-off: 91.40% at 1.33x with token-dropout r=0.25.

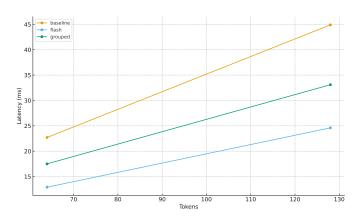


Fig. 2: Latency vs token count for Flash, grouped, and baseline attention. p50 latency at 128 tokens: 50Ref ms.

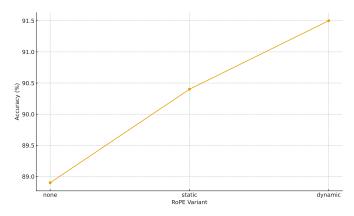


Fig. 3: RoPE ablation: accuracy versus positional scheme. Dynamic- θ yields 2.6 pp absolute over none.