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Abstract—Long spectrum sequences stress attention mem-
ory and bandwidth. We benchmark grouped-query attention
(GQA) against multi-head attention (MHA) and multi-query
attention (MQA) on FFT-token streams. GQA provides substantial
throughput gains and peak-memory reductions while maintaining
accuracy across token groupings.
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I. INTRODUCTION

RF monitoring pipelines often tokenize FFT power spectra
into long sequences for downstream classification or anomaly
scoring. Vanilla multi-head attention (MHA) quickly becomes
memory-bound as sequence length increases. We study grouped-
query attention (GQA) as a middle ground between MHA and
MQA: reduce key/value projections while retaining multiple
query groups.

II. BACKGROUND

MHA, MQA, and GQA. MHA uses independent Q/K/V per
head. MQA shares a single K/V across all heads, improving
decoding throughput but sometimes degrading accuracy. GQA
shares K/V across groups of heads, striking a balance between
parallelism and capacity. Complexity. All three retain O(L2)
compute in training, but device memory traffic differs because
of K/V replication versus sharing and kernel fusion opportuni-
ties. RF token streams. In spectrum-token workloads, L can
exceed 4k–16k, making K/V footprints the dominant limiter.

III. METHOD: GROUPED-QUERY ATTENTION

We implement GQA with H heads and G groups (G | H).
Queries remain per-head; keys and values are shared within
each group:

Q ∈ RL×H×dq , K, V ∈ RL×G×dk (1)

Attn(Q,K, V ) = softmax

(
QK⊤
√
d

)
V (2)

We consider fused kernels for attention matmuls and K/V
packing layouts that minimize memory movement.
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Fig. 1: Throughput vs sequence length. At L=, GQA reaches
samples/s, outpacing MHA and MQA.

IV. EXPERIMENTAL SETUP

A. Benchmarks

We benchmark throughput (samples/s), latency (ms), and
peak memory (MiB) for {MHA, MQA, GQA} across sequence
length L ∈ {1k, 2k, 4k, 8k, 16k}. Hidden size 512, H=8 heads,
G ∈ {1, 2, 4} for GQA; batch size 8.

B. Data

Spectrum tokens are derived from windowed FFT magnitudes
(Hann, 50% overlap); token stride 4 with max-pool.

C. Measurement

We report p50 throughput and peak allocator usage measured
over 100 warmup + 1000 iterations; accuracy is a held-out
spectrum-classification score.

V. RESULTS

VI. RELATED WORK

We build on efficient attention literature including FlashAt-
tention and variants, multi-query attention for fast decoding,
and recent grouped-query designs. On the RF side, spectrum
compression and transformer-based demodulation pipelines
motivate long-context attention under strict memory budgets.
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Fig. 2: Peak memory vs sequence length. At L=, GQA reduces
peak memory by over MHA.
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Fig. 3: Accuracy vs groups-per-query. Accuracy delta between
GQA and MHA is absolute at the best grouping.

VII. CONCLUSION

Grouped-query attention provides a pragmatic win for long
spectrum tokens: higher throughput and lower peak memory
with minimal accuracy impact. In practice, G=2 or G=4
offers most of the benefit; larger G approaches MHA’s cost
with diminishing gains. Future work includes fusing GQA
with token-dropout and chunked attention for streaming SDR
workloads.


