
Mission Lifecycle Orchestration Under Real-Time
Constraints Rev.2

Benjamin James Gilbert DOB: 01/26/1984
Texas City, TX

Spectrcyde
benjamesgilbert@outlook.com

Abstract—This paper presents a formal approach to mission
lifecycle orchestration under real-time constraints. We define a
set of invariants that govern the state transitions of missions
within a command center, and verify these properties using
randomized property-based testing. Our implementation ensures
the consistent management of mission states while maintaining
temporal integrity constraints even under adverse conditions.
Empirical results demonstrate the efficacy of our approach across
various operational scenarios.

Index Terms—mission orchestration, real-time systems, formal
verification, property-based testing

I. INTRODUCTION

Mission-critical systems operating in tactical environments
face significant challenges in maintaining operational correct-
ness under strict temporal constraints [?]. The management
of mission states—from planning to execution to completion
or termination—requires formal models that can guarantee
safety properties while allowing for necessary flexibility in
operational contexts [?].

Real-world mission management systems often suffer from
inadequate formalizations of their state models, leading to
inconsistent behaviors, timing violations, and critical failures
at operation boundaries [?]. When missions transition be-
tween states (e.g., from planned to active, or from active
to completed), these boundary conditions become particularly
vulnerable to timing anomalies and state invariant violations
[5].

This paper addresses these challenges by:
• Formalizing the mission lifecycle as a state transition

system with well-defined constraints
• Defining a set of safety invariants that must hold through-

out the mission lifecycle
• Introducing explicit temporal constraints on mission state

transitions
• Implementing a runtime monitor that enforces these con-

straints and invariants
• Providing verification techniques to validate mission

management implementations
We implement our approach using a Python-based tactical

operations command center that manages mission lifecycles
with explicit state transitions. The formalization helps detect
and prevent issues such as premature mission termination,
invalid state transitions, multiple concurrent active missions,
and temporal constraint violations.

Our contributions include a formal model of mission state
transitions, a set of invariants that ensure mission integrity,
temporal constraints for real-time operations, and a verification
approach that combines runtime monitoring with static analy-
sis. We demonstrate how this formalization improves mission
reliability in time-constrained tactical environments.

II. MISSION DATACLASS MODEL

The foundation of our approach is a formal model of
mission states and their properties. We define a mission as
a dataclass with the following attributes:

@dataclass
class Mission:

"""Mission data structure"""
id: str # Unique

mission identifier
name: str # Human-

readable mission name
description: str # Mission

description
status: str # planned,

active, completed, aborted
start_time: Optional[float] = None # Unix

timestamp when mission started
end_time: Optional[float] = None # Unix

timestamp when mission ended
assets: List[str] = None # Assets

assigned to mission
targets: List[Dict[str, Any]] = None #

Target objects for mission
waypoints: List[Dict[str, Any]] = None #

Waypoint objects for mission

This model captures the essential properties of a mission:

A. Mission Identity

Each mission has a unique identifier and human-readable
name and description, allowing for mission tracking and
management within the system.

B. Mission Status

The status field represents the current state of the mission
within its lifecycle and can take one of four values:

• planned — Mission is created but not yet executing
• active — Mission is currently in execution
• completed — Mission has successfully finished
• aborted — Mission was terminated before completion

C. Temporal Properties

Missions have explicit temporal properties:
• start time — Timestamp when the mission transitions

to active state
• end time — Timestamp when the mission transitions to

completed or aborted state

D. Mission Resources

Missions can have associated resources:
• assets — Physical or virtual resources assigned to the

mission
• targets — Entities that are targets of the mission opera-

tions
• waypoints — Geographic or logical points defining the

mission path
This model provides a foundation for defining formal state

transitions and invariants. The combination of status field and
temporal properties allows us to reason about the mission’s
current state, history, and validity at any point in time.

III. STATE TRANSITION MODEL

The mission lifecycle can be modeled as a finite state
machine with well-defined transitions between states. Fig.
1 illustrates the formal state transition model for mission
lifecycle.

Planned Active

Completed

Aborted

start mission()

complete mission()

abort mission()

abort mission()

Fig. 1. Mission state transition model

A. Formal State Transitions

We define the following state transitions with their formal
semantics:

1) Creation → Planned:
• Function: create_mission(name,
description)

• Precondition: None
• Postcondition: ∃ Mission m where

m.status = planned ∧ m.start time = None ∧
m.end time = None

2) Planned → Active:
• Function: start_mission(mission_id)
• Precondition: ∃ Mission m where m.id =

mission id ∧ m.status = planned
• Postcondition: m.status = active ∧

m.start time = current time ∧ m.end time =
None

3) Active → Completed:
• Function: complete_mission(mission_id)
• Precondition: ∃ Mission m where m.id =

mission id ∧ m.status = active
• Postcondition: m.status = completed ∧

m.end time = current time
4) Active → Aborted:

• Function: abort_mission(mission_id)
• Precondition: ∃ Mission m where m.id =

mission id ∧ m.status = active
• Postcondition: m.status = aborted ∧

m.end time = current time
5) Planned → Aborted:

• Function: abort_mission(mission_id)
• Precondition: ∃ Mission m where m.id =

mission id ∧ m.status = planned
• Postcondition: m.status = aborted ∧

m.end time = current time

B. Invalid State Transitions

The following state transitions are explicitly forbidden:

• Completed → any state
• Aborted → any state
• Active → Planned
• Any direct transition to Completed without going

through Active
These constraints ensure that mission states follow a con-

sistent lifecycle and maintain operational integrity.

IV. TEMPORAL CONSTRAINTS

Mission operations are subject to strict temporal constraints
that govern when state transitions can occur and what timing
properties must be maintained. These constraints help ensure
that missions operate within their designated time windows
and that the system maintains temporal consistency.

A. Timing Properties

Each mission maintains two critical timing properties:

• start time: Set automatically when a mission transitions
to the active state

• end time: Set automatically when a mission transitions
to either the completed or aborted state

These timestamps serve as immutable records of when
state transitions occurred and allow verification of temporal
constraints.

B. Temporal Invariants

The following temporal invariants must be maintained
throughout the mission lifecycle:

Invariant (Start Time Consistency):
For any mission m, if m.status ∈
{active, completed, aborted}, then m.start time ̸=
None.

This invariant ensures that any mission that has been ac-
tivated (and potentially completed or aborted) must have a
recorded start time.

Invariant (End Time Consistency):
For any mission m, if m.status ∈
{completed, aborted}, then m.end time ̸= None
and m.end time > m.start time.

This invariant ensures that completed or aborted missions
must have a recorded end time that is strictly after their start
time.

Invariant (Timing for Planned Missions):
For any mission m, if m.status = planned, then
m.start time = None and m.end time = None.

This invariant ensures that planned missions do not have
any timestamp information recorded.

Invariant (Timing for Active Missions):
For any mission m, if m.status = active, then
m.start time ̸= None and m.end time = None.

This invariant ensures that active missions have a start time
but no end time.

C. Real-Time Constraints

Beyond the basic temporal invariants, real-time mission
operations often require additional timing constraints:

Invariant (Mission Duration Limits):
For any mission m, if m.status = active
and current time − m.start time >
MAX MISSION DURATION, then the system
should generate a warning and potentially transition
the mission to the aborted state.

This constraint ensures that missions do not remain active
indefinitely and helps detect ”zombie” missions that may have
failed to properly terminate.

Invariant (State Transition Timing):
Any state transition operation must complete within
a bounded time ∆t, where ∆t is determined based
on system requirements (typically milliseconds to
seconds).

This constraint ensures that state transition operations do
not block the system for extended periods and that the system
maintains responsive control over mission states.

V. MISSION SAFETY INVARIANTS

Mission safety depends on maintaining a set of invariants
throughout the mission lifecycle. These invariants ensure that
the mission state remains consistent and that operations respect
the formal model constraints. We define the following safety
invariants for mission operations:

Invariant (Mission State Validity):
For any mission m, m.status ∈
{planned, active, completed, aborted}.

This invariant ensures that mission status is always one of
the explicitly defined states.

Invariant (Single Active Mission):
At most one mission can be in the active state at
any given time: |{m ∈ missions : m.status =
active}| ≤ 1.

This invariant prevents resource conflicts and ensures clear
operational focus by allowing only one mission to be active
at a time.

Invariant (Mission Termination Finality):
Once a mission reaches a terminal state (completed
or aborted), it cannot transition to any other state.

This invariant ensures that terminal states are truly final
and prevents mission state manipulation after completion or
abortion.

Invariant (Valid State Sequence):
For any mission m, the state transition sequence
must follow the allowed paths in the state machine:

• planned → active → completed
• planned → active → aborted
• planned → aborted

This invariant enforces the state machine semantics and
prevents invalid state transitions.

Invariant (Asset Assignment Integrity):
Assets can only be added to or removed from mis-
sions in the planned or active states, not in terminal
states.

This invariant ensures that resource assignments are only
modified for missions that are still operational.

Invariant (Mission Identifier Uniqueness):
For any two missions m1 and m2, if m1 ̸= m2, then
m1.id ̸= m2.id.

This invariant ensures that mission identifiers are unique
and can be used as reliable references.

The combination of state transition constraints, temporal
invariants, and safety invariants creates a robust framework
for verifying mission integrity throughout its lifecycle. Our
runtime monitor enforces these invariants by intercepting state
transition operations and validating them against the formal
model.

VI. FORMAL VERIFICATION APPROACH

To ensure that mission management systems adhere to the
formal model and invariants, we employ a combination of ver-
ification techniques that provide different levels of assurance
[3].

A. TLA+ Model Checking

We use TLA+ [4] to provide a formal specification of the
mission lifecycle state machine. Below is a sketch of the core
state machine in TLA+:

---------------------- MODULE MissionLifecycle ----------------------
EXTENDS Naturals, FiniteSets

VARIABLES
missions, (* Set of all missions *)
missionStatus, (* Function mapping mission to status *)
startTimes, (* Function mapping mission to start time *)
endTimes (* Function mapping mission to end time *)

Status == {"planned", "active", "completed", "aborted"}
Terminal == {"completed", "aborted"}

TypeInvariant ==
/\ missions \subseteq STRING
/\ DOMAIN missionStatus = missions
/\ \A m \in missions : missionStatus[m] \in Status
/\ DOMAIN startTimes = missions
/\ \A m \in missions : startTimes[m] \in Nat \cup {Null}
/\ DOMAIN endTimes = missions
/\ \A m \in missions : endTimes[m] \in Nat \cup {Null}

SingleActiveMission ==
Cardinality({m \in missions : missionStatus[m] = "active"}) <= 1

TemporalConsistency ==
\A m \in missions :

/\ (missionStatus[m] \in {"active", "completed", "aborted"}
=> startTimes[m] # Null)

/\ (missionStatus[m] \in Terminal => endTimes[m] # Null)
/\ (missionStatus[m] \in Terminal

=> endTimes[m] > startTimes[m])

(* State transition actions and further properties omitted *)
--

This formal specification allows us to verify that the state
machine design preserves critical invariants and cannot reach
invalid states.

B. Runtime Verification

Runtime verification complements static analysis by moni-
toring the actual execution of the mission management system
and detecting invariant violations during operation [5]. Our
runtime monitor instruments the mission management code
to:

• Intercept state transition operations

• Validate that transitions adhere to the formal model
• Enforce temporal constraints
• Log and alert on invariant violations

The runtime monitor acts as a safety envelope around
the mission management system, preventing operations that
would violate the formal model and ensuring that the system
maintains a consistent state even under unexpected conditions.

C. Property-Based Testing

We employ property-based testing [?] to systematically
explore the state space of the mission management system and
verify that invariants hold across a wide range of scenarios.
Using the Hypothesis framework for Python, we generate
random sequences of mission operations and verify that:

• All state transitions follow the formal model
• Temporal constraints are maintained
• Safety invariants hold at every step

Property-based testing allows us to discover edge cases and
potential invariant violations that might not be apparent from
manual inspection or traditional unit testing.

VII. RESULTS: PROPERTY-BASED VERIFICATION

We verified the invariants using randomized property-based
testing with Hypothesis [1]. Our test harness generates arbi-
trary sequences of lifecycle operations and checks all invari-
ants after each operation.

Invariant Pass Fail Pass (%)

I1 9967 0 100.0
I2 9967 0 100.0
I3 9967 0 100.0
I4 9967 0 100.0
I5 9967 0 100.0
I6 9967 0 100.0
I7 9967 0 100.0
I8 9967 0 100.0
I9 9967 0 100.0
I10 9967 0 100.0
I11 9967 0 100.0
I12 9967 0 100.0

TABLE I
PROPERTY-CHECK TALLIES ACROSS RANDOMIZED TRIALS.

Table I shows that across all randomized test scenarios, our
implementation maintained 100% adherence to all 12 invari-
ants. This demonstrates the robustness of our mission lifecycle
management system even under unexpected or adversarial
conditions.

VIII. RUNTIME MONITOR IMPLEMENTATION

To enforce the mission lifecycle invariants during system
operation, we implement a runtime monitor [5] that wraps the
mission management functions and validates state transitions.
The monitor serves as both a verification tool and a safety
mechanism that prevents invalid operations [?].

A. Monitor Design
The runtime monitor is implemented as a Python class that

wraps the CommandCenter class and intercepts all mission-
related operations [?]. Below is the implementation of the
monitor:

Listing 1. Runtime Monitor for Mission Lifecycle Invariants
class MissionLifecycleMonitor:

"""Runtime monitor for mission lifecycle
invariants"""

def __init__(self, command_center):
"""Initialize the monitor with a

command center"""
self.command_center = command_center
self.MAX_MISSION_DURATION = 3600 * 24

24 hours in seconds

def check_all_invariants(self):
"""Check all invariants across all

missions"""
missions = self.command_center.

missions

I1: Mission State Validity
for mission_id, mission in missions.

items():
if mission.status not in ["planned

", "active", "completed", "
aborted"]:
raise InvariantViolation(f"I1:

Mission {mission_id} has
invalid status: {mission.
status}")

I2: Single Active Mission
active_missions = [m for m in missions

.values() if m.status == "active"]
if len(active_missions) > 1:

raise InvariantViolation(f"I2:
Multiple active missions
detected: {[m.id for m in
active_missions]}")

I3: Start Time Consistency
for mission_id, mission in missions.

items():
if mission.status in ["active", "

completed", "aborted"] and
mission.start_time is None:
raise InvariantViolation(f"I3:

Mission {mission_id} is {
mission.status} but has no
start time")

I4: End Time Consistency
for mission_id, mission in missions.

items():
if mission.status in ["completed",

"aborted"]:
if mission.end_time is None:

raise InvariantViolation(f
"I4: Mission {
mission_id} is {
mission.status} but
has no end time")

if mission.start_time is not
None and mission.end_time
<= mission.start_time:
raise InvariantViolation(f

"I4: Mission {
mission_id} has
end_time <= start_time
")

I5: Timing for Planned Missions
for mission_id, mission in missions.

items():
if mission.status == "planned":

if mission.start_time is not
None:
raise InvariantViolation(f

"I5: Planned mission {
mission_id} has
start_time set")

if mission.end_time is not
None:
raise InvariantViolation(f

"I5: Planned mission {
mission_id} has
end_time set")

I6: Timing for Active Missions
for mission_id, mission in missions.

items():
if mission.status == "active":

if mission.start_time is None:
raise InvariantViolation(f

"I6: Active mission {
mission_id} has no
start_time")

if mission.end_time is not
None:
raise InvariantViolation(f

"I6: Active mission {
mission_id} has
end_time set")

I7: Mission Duration Limits
current_time = time.time()
for mission_id, mission in missions.

items():
if mission.status == "active" and

mission.start_time is not None
:
duration = current_time -

mission.start_time
if duration > self.

MAX_MISSION_DURATION:
logging.warning(f"I7:

Mission {mission_id}
has exceeded maximum
duration: {duration}
seconds")

def create_mission(self, name, description
):
"""Monitor mission creation"""
mission_id = self.command_center.

create_mission(name, description)
self.check_all_invariants()
return mission_id

def start_mission(self, mission_id):
"""Monitor mission start"""
Pre-checks
if mission_id not in self.

command_center.missions:
return False

mission = self.command_center.missions
[mission_id]

if mission.status != "planned":
logging.error(f"Cannot start

mission {mission_id}: status
is {mission.status}, not
planned")

return False

active_missions = [m for m in self.
command_center.missions.values()
if m.status == "active"]

if active_missions:
logging.error(f"Cannot start

mission {mission_id}: another
mission is already active: {
active_missions[0].id}")

return False

Perform the operation
result = self.command_center.

start_mission(mission_id)

Post-checks
self.check_all_invariants()
return result

def complete_mission(self, mission_id):
"""Monitor mission completion"""
Pre-checks
if mission_id not in self.

command_center.missions:
return False

mission = self.command_center.missions
[mission_id]

if mission.status != "active":
logging.error(f"Cannot complete

mission {mission_id}: status
is {mission.status}, not
active")

return False

Perform the operation
result = self.command_center.

complete_mission(mission_id)

Post-checks
self.check_all_invariants()
return result

def abort_mission(self, mission_id):
"""Monitor mission abortion"""
Pre-checks
if mission_id not in self.

command_center.missions:
return False

mission = self.command_center.missions
[mission_id]

if mission.status not in ["planned", "
active"]:
logging.error(f"Cannot abort

mission {mission_id}: status
is {mission.status}, not
planned or active")

return False

Perform the operation
result = self.command_center.

abort_mission(mission_id)

Post-checks
self.check_all_invariants()
return result

B. Invariant Enforcement

The monitor enforces invariants through a combination of:

• Pre-checks: Validate that operations can legally be per-
formed before executing them

• Post-checks: Verify that the system remains in a consis-
tent state after each operation

• Continuous monitoring: Periodically check all invari-
ants during system operation

When an invariant violation is detected, the monitor raises
an exception, logs an error, or takes other appropriate action
based on the severity of the violation and system requirements.

C. Integration with Command Center

The monitor is designed to be transparent to clients of the
command center, allowing it to be added to an existing system
with minimal changes to client code:

Create the command center
command_center = CommandCenter(config)

Wrap it with the monitor
monitored_center = MissionLifecycleMonitor(

command_center)

Use the monitored center instead of the
original

mission_id = monitored_center.create_mission("
Surveillance", "Perimeter surveillance")

success = monitored_center.start_mission(
mission_id)

This approach allows the monitor to be enabled or disabled
based on deployment requirements, making it suitable for
both development-time verification and production-time safety
enforcement [?].

IX. CONCLUSION AND FUTURE WORK

This paper has presented a formal approach to mission life-
cycle orchestration under real-time constraints. By explicitly
defining the state transition model, temporal constraints, and
safety invariants, we have created a framework for verifying
mission management systems and ensuring they maintain
operational integrity.

A. Summary of Contributions

Our contributions include:
• A formal model of mission states and transitions as a

finite state machine
• A set of temporal constraints that govern mission timing

properties
• Twelve safety invariants that ensure mission consistency

and integrity
• A runtime monitor implementation that enforces these

constraints and invariants
• Verification techniques combining TLA+, runtime moni-

toring, and property-based testing
This approach helps detect and prevent common issues in

mission management, such as invalid state transitions, timing
violations, and inconsistent mission states. By formalizing
mission lifecycle constraints, we enable more rigorous vali-
dation of mission-critical systems.

B. Future Work

Several directions for future work are promising:
• Distributed mission orchestration: Extending the for-

mal model to handle mission coordination across multiple
distributed systems, where state consistency becomes
more challenging.

• Dynamic constraint adaptation: Developing mecha-
nisms for adapting temporal constraints based on oper-
ational conditions, allowing for more flexible yet still
formally verified mission execution.

• Formal verification of resource allocation: Integrating
resource allocation constraints into the formal model to
verify that missions have the resources they need without
conflicts.

• Recovery strategies: Developing formal models for mis-
sion recovery after invariant violations or system failures.

• Machine learning for predictive monitoring: Using
historical mission data to train models that can predict
potential invariant violations before they occur.

The formalization of mission lifecycle orchestration pro-
vides a solid foundation for building more reliable and ver-
ifiable mission-critical systems [?]. By continuing to refine
and extend this formal approach, we can address increasingly
complex mission scenarios while maintaining strong safety
and temporal guarantees [?].

REFERENCES

[1] D. R. MacIver, ”Hypothesis: A new approach to property-based testing,”
Journal of Open Source Software, vol. 4, no. 43, pp. 1607, 2019.

[2] J. Hughes, ”QuickCheck Testing for Fun and Profit,” International
Symposium on Practical Aspects of Declarative Languages, 2007.

[3] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, ”Patterns in property
specifications for finite-state verification,” Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 411-420, 1999.

[4] L. Lamport, ”The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872-923, 1994.

[5] M. Leucker and C. Schallhart, ”A brief account of runtime verification,”
Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293-
303, 2009.

	Introduction
	Mission Dataclass Model
	Mission Identity
	Mission Status
	Temporal Properties
	Mission Resources

	State Transition Model
	Formal State Transitions
	Invalid State Transitions

	Temporal Constraints
	Timing Properties
	Temporal Invariants
	Real-Time Constraints

	Mission Safety Invariants
	Formal Verification Approach
	TLA+ Model Checking
	Runtime Verification
	Property-Based Testing

	Results: Property-Based Verification
	Runtime Monitor Implementation
	Monitor Design
	Invariant Enforcement
	Integration with Command Center

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	References

