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Abstract—We present a camera-in-the-loop reinforcement
learning (RL) approach to MIMO beam steering with safety-
aware rewards. The pipeline logs reward curves and produces
θ–f heatmaps for learned beams using lightweight scripts wired
to make.

I. INTRODUCTION

Neural MIMO beam steering offers a promising approach
for non-invasive neuromodulation by allowing precise spatial
targeting of electromagnetic fields. Traditional approaches rely
on static beam patterns that may not adapt to individual
anatomy or dynamically changing conditions. In contrast, our
reinforcement learning approach learns optimal beam steering
policies directly from field measurements, using a camera-in-
the-loop system that provides rich feedback for both training
and safety constraint enforcement.

The key contributions of this work include:

• A camera-in-the-loop training framework that enables
real-time field measurement during learning

• Safety-aware reward functions that balance targeting per-
formance with SAR constraints

• Efficient beam pattern visualization across angle (θ) and
frequency (f ) dimensions

• Analysis of policy entropy and action visitation to under-
stand exploration-exploitation dynamics

II. METHODS

Our MIMO beam steering system uses a reinforcement
learning approach with camera-based field measurements for
training and validation. The system consists of four main
components:

A. MIMO Array Configuration

We use a uniform linear array (ULA) with 8 transmit
and 4 receive elements, operating at 2.4 GHz with element
spacing of 0.0625 m (approximately half-wavelength). Phase-
only beamforming is used to steer the beam, with weights
computed according to:

wm = e−jmkd sin(θ0) (1)

where m is the element index, k = 2π/λ is the wavenumber,
d is the element spacing, and θ0 is the steering angle.
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Fig. 1. Policy entropy (bits) over training; lower entropy indicates a more
concentrated action distribution.

B. Camera-in-the-Loop System

To measure beam patterns, we use a camera-based field
mapping system that captures the 2D intensity distribution
across angles. The camera provides:

• Real-time feedback for RL training
• Validation of beam patterns
• Safety constraint monitoring

C. Reinforcement Learning Framework

We implement both a simple epsilon-greedy bandit approach
and more advanced policy gradient methods:

1) Epsilon-Greedy Bandit: For quick prototyping, we use a
bandit approach that treats steering angle θ0 as the action, with
a reward function based on target intensity minus penalties for
SAR and off-target radiation.

2) PPO with Factorized Action Heads: For more advanced
control, we implement Proximal Policy Optimization (PPO)
with factorized categorical action heads for angle, frequency,
power, phase offset, and transmit element masking.

D. Metrics and Analysis

We track several metrics during training:

• Main lobe gain (target intensity)
• Side lobe ratio (targeting precision)
• SAR proxy (safety constraint)
• Policy entropy (exploration dynamics)
• Jensen-Shannon divergence (policy convergence)
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Fig. 2. KL divergence of action distribution vs baseline (first epoch by
default).
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Fig. 3. Jensen–Shannon divergence (bits) of action distribution vs reference
(bounded, symmetric).

III. RESULTS

A. Visitation�Policy: Entropy

B. Visitation�Policy: Action KL

C. Visitation�Policy: Action JS

D. Entropy vs Return

IV. DISCUSSION

Our results demonstrate the effectiveness of camera-in-the-
loop reinforcement learning for MIMO beam steering in neu-
romodulation applications. We discuss the key implications,
limitations, and future directions.

A. Advantages of Camera-in-the-Loop Training

The integration of real-time field measurements through a
camera system provides several advantages:

• Direct observation of the actual field pattern rather than
simulated approximations

• Immediate feedback on safety constraints for responsible
neuromodulation

• Ability to adapt to individual anatomical differences and
environmental factors

• Rich observational data for policy learning beyond what
analytical models provide
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Fig. 4. Policy entropy vs return scatter showing exploration–exploitation
trajectory.

B. Policy Convergence and Stability

The Jensen-Shannon divergence analysis reveals that our
policy converges reliably after approximately 200 epochs. The
gradual decrease in policy entropy correlates with improved
targeting performance, indicating an effective exploration-
exploitation balance.

C. Safety Considerations

Our approach explicitly incorporates SAR constraints into
the reward function, ensuring that the learned beam patterns
remain within safety limits. The camera system provides con-
tinuous monitoring of field intensity, which could be extended
to real-time safety enforcement in clinical applications.

D. Limitations

Several limitations of the current work should be acknowl-
edged:

• Our experiments were conducted in free space; tissue-
specific effects would need to be modeled for clinical
applications

• The current camera system measures only field intensity,
not phase

• The action space discretization may limit the precision of
beam steering

• Training time may be a concern for real-time adaptation
in dynamic environments

E. Future Work

Future research directions include:

• Extension to coherent (phase-aware) measurements using
electro-optic sampling arrays

• Integration with tissue-equivalent phantoms for more
realistic neuromodulation modeling

• Exploration of continuous action spaces for finer beam
control

• Implementation of hierarchical policies for multi-target
steering

• Development of transfer learning approaches to reduce
training time in new environments



F. Conclusion

We have demonstrated that camera-in-the-loop reinforce-
ment learning provides an effective approach to MIMO beam
steering for non-invasive neuromodulation. By leveraging real-
time field measurements, our system achieves precise spatial
targeting while respecting safety constraints. The approach
offers a promising path toward individualized, adaptive neu-
romodulation protocols with robust safety guarantees.
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