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Abstract—We present a mission-aware fusion frame-

work that geolocates RF emitters at city scale by
combining real-time measurements (bearing/ToA/T-
DoA/SNR/beam confidence) with OSINT-derived spa-
tial/temporal priors (FCC records, building/permit
graphs, Wi-Fi maps, and on-chain timing). A Bayesian
tracker maintains a belief over candidate sites while a
lifecycle-verified mission orchestrator triggers tasking
under latency budgets. We quantify gains from OSINT
priors, reductions in sorties, and time-to-convergence.

I. Introduction
RF emitter geolocation presents unique challenges in

urban environments, where multipath propagation, signal
occlusion, and interference complicate traditional direction-
finding techniques. Moreover, covert actors may intention-
ally conceal their emissions or employ deceptive practices.
This paper introduces a novel approach that augments
standard RF measurement techniques with Open Source
Intelligence (OSINT) to create informative spatial priors,
significantly enhancing geolocation performance at city
scale.

Our system addresses several critical use cases, including
identifying unauthorized transmitters, locating covert relay
stations, mapping VPN exit nodes, and detecting RF side
effects from otherwise concealed operations. By integrating
mission-aware control loops with formal lifecycle invari-
ants, we ensure robust operation even under adversarial
conditions.

II. Related Work
A. RF Geolocation Techniques

Traditional RF geolocation relies on bearing measure-
ments (direction finding), time of arrival (ToA), time
difference of arrival (TDoA), and received signal strength
(RSS) [?]. Urban environments complicate these approaches
due to multipath propagation and occlusion [?].

B. Bayesian Tracking and Fusion
Bayesian approaches to tracking maintain probability

distributions over target state. Kalman filters are optimal
for linear-Gaussian systems, while particle filters accommo-
date nonlinear measurements and multimodal distributions

[?]. Rao-Blackwellized particle filters combine strengths of
both approaches [?].

C. Mission Lifecycle Management

Mission orchestration frameworks ensure operations
follow specified constraints and invariants [?]. These frame-
works coordinate sensor deployments, ensure safety mar-
gins, and handle contingencies when faced with unexpected
conditions.

III. OSINT Priors

A. FCC & spectrum assignments

FCC Universal Licensing System (ULS) provides com-
prehensive databases of licensed transmitters, including
location, frequency, and power parameters. We process
these records to create spatial priors over potential emission
sources, particularly helpful for narrowband signals within
regulated spectra.

B. Building and permit graphs

Building footprints, heights, and roof access data from
municipal permits and OpenStreetMap create structural
priors on potential transmitter locations. We compute ac-
cessibility scores and sightline analyses to weight locations
based on their suitability for covert operations.

C. Wi-Fi/BSSID maps

Publicly available Wi-Fi maps reveal the density of
consumer wireless equipment, providing valuable priors
for consumer-grade equipment operating in ISM bands.
These maps are particularly useful for locating small cells
and improvised relay stations.

D. On-chain timing signals

Blockchain transaction patterns, particularly mempool
timing windows, can correlate with RF emission bursts.
We demonstrate how these temporal patterns create infor-
mative priors when combined with spectrum monitoring,
especially for emissions associated with cryptocurrency
operations.



IV. Sensor Fusion Model

A. Measurement models

We model bearing measurements using von Mises distri-
butions:

p(θ|x, s) ∝ exp(κ cos(θ − ϕx,s)) (1)

where θ is the measured bearing, ϕx,s is the true bearing
from sensor s to emitter location x, and κ is the concen-
tration parameter reflecting measurement confidence.

For ToA and TDoA, we employ normal distributions with
variance scaling based on signal strength and environmental
factors:

p(t|x, s) ∝ N (t; ||x − s||/c, σ2) (2)

B. Dynamic model (mobility/occlusion)

The emitter state xt = [px, py, vx, vy]T evolves according
to:

xt+1 = Fxt + wt, wt ∼ N (0, Q) (3)

where F incorporates the constant velocity model and
Q captures process noise from mobility, occlusion, and
environmental factors.

C. Inference (particle / RBPF)

For single-emitter scenarios, we employ a particle filter
with adaptive resampling: Particle Filter with OSINT
Priors Initialize particles {xi

0}N
i=1 from OSINT prior

or uniform each time step t Propagate particles: x̂i
t ∼

p(xt|xi
t−1) Weight particles: wi

t = p(zt|x̂i
t) effective sample

size < threshold Resample particles
For multi-emitter tracking, we implement a Probability

Hypothesis Density (PHD) filter that maintains a multi-
modal distribution over potential emitter locations.

V. Mission-Aware Orchestration

Lifecycle transitions (planned → active → complet-
ed/aborted), timers, and invariant gating (I1–I12). We
reuse the verified core; see the companion paper for the
formalization.

Our mission orchestrator verifies that all operations
satisfy the core invariants established in our previous work
[?]. These invariants ensure that:

• Missions proceed through well-defined states (I1)
• Timing constraints are preserved (I2-I4)
• Resource conflicts are avoided (I5)
• Engineering constraints on mission parameters are

satisfied (E1-E4)
The orchestrator schedules sensor deployments using

active learning for next-best-view selection, maximizing
the expected information gain while respecting latency
budgets and operational constraints.

VI. Implementation
We implemented our system using a combination of

Python for the core fusion algorithms, and a Cesium-
based frontend for visualization. The geolocation pipeline
processes measurements in real-time, maintaining belief
states that are continuously updated as new information
arrives.

Key implementation components include:
• Particle and Kalman filter implementations optimized

for bearing-only and hybrid measurements
• TLA+ specifications for the mission lifecycle con-

straints
• OSINT data loaders with reproducible caching for

deterministic results
• Next-best-view scheduler for efficient sensor tasking

VII. Evaluation
A. Belief evolution with/without OSINT

Figure 1 shows the evolution of belief distributions with
and without OSINT priors. The top panel shows conven-
tional bearing-only localization, while the bottom panel



demonstrates how OSINT priors significantly concentrate
the probability mass around likely locations.

Figure 1b shows the combined target estimates from
all filters overlaid on the map, demonstrating the relative
accuracy and precision of each approach.

B. Convergence vs. sensor count

Figure 2 demonstrates how convergence time decreases
as the number of sensors increases, with OSINT priors
consistently accelerating convergence across all sensor
configurations.

C. Ablation of priors

Figure 3 shows the marginal contribution of each OSINT
source to the overall geolocation performance. FCC records
provide the strongest signal, followed by Wi-Fi maps,
building permits, and on-chain timing.

D. Next-best-view decisions

Figure 4 illustrates the progression of utility as our
active learning algorithm selects optimal sensing locations,
demonstrating efficient convergence even with limited
deployment resources.

Results Summary

TABLE I
Geolocation Performance and Verification Results

Source Metric Value

Geolocation Avg conv. time (no OSINT) 46.9 s
Geolocation Avg conv. time (with OSINT) 32.7 s
Geolocation Relative improvement 30.2%

TLC Model Checking Status unknown
TLC Model Checking States explored None
TLC Model Checking Search depth None

VIII. Compliance (Stub)
We add operational guardrails for scraping/sensing

boundaries and later include caselaw citations in an
appendix.

IX. Discussion and Limitations
While our approach significantly improves geolocation

performance, several limitations remain:
• Adversaries aware of our system could intentionally

operate from locations with low OSINT prior proba-
bility

• Our approach assumes that OSINT data is reasonably
current and accurate

• Privacy considerations limit the application of our
technique in certain jurisdictional contexts

Future work will address these limitations through
adversarial training, automated OSINT verification, and
enhanced compliance frameworks.



X. Conclusion
We have demonstrated that OSINT-augmented RF ge-

olocation significantly outperforms traditional approaches,
particularly in challenging urban environments. By formal-
izing mission lifecycle invariants and integrating them into
our orchestration layer, we ensure reliable operation even
under tight resource and time constraints.

The modular nature of our approach allows for flexible
deployment across a range of scenarios, from emergency
services to infrastructure protection. As OSINT sources
continue to expand, we expect the performance of our
system to improve further without architectural changes.
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