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TABLE I
GM-PHD MI ABLATION (STUDENT-t BEARINGS; MID = MIDPOINT OF

BOUNDS).

Prior set Ml  Mlpia Mgy

Baseline (no OSINT) - - -

+ FCC licensing - - -

+ Wi-Fi / BSSID maps - - -

+ Building/permit graphs - - -

+ On-chain timing - - -

All priors (full) 0.000 0.882 1.763

Abstract—This paper presents a novel approach for Next-Best-
View (NBV) planning for Urban RF Geolocation, conditioned
by Open-Source Intelligence (OSINT). The system combines
information-theoretic NBV planning with formal verification
through TLA+ specifications to ensure safety invariants.

I. INTRODUCTION
II. NBV RESULTS

NBYV Results (auto)
MI (mnats): 1b=0.000, mid=1.317, ub=2.635  Utility:
0.817 Cost: 0.500 R.g = 0.120.
Step  Sensor X y
current 1 150.000  75.000
1 1 80.000 85.000
2 2 140.000  110.000
TLA+ ActionGate: PASS (states=13, distinct=3,
depth=2).
See Table I for GM-PHD MI ablation by prior.

ITI. NEXT-BEST-VIEW PLANNING APPROACH
IV. MI ABLATION ANALYSIS
V. GHOST-RF SINGLE-PIXEL RANGING
A. Ghost-RF single-pixel ranging under urban multipath

a) Measurement principle.: Inspired by ghost optical
coherence tomography (OCT), we replace a high-fidelity
per-frequency readout with a single-pixel integrated detector
whose scalar output varies as a known random spectral pattern
is applied [1]. Let s;(f) denote the known pattern at snapshot
k € {1,...,K} over discrete frequencies f € F, and let
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Fig. 1. Depth-2 NBV plan: current — step-1 — step-2, OSINT-conditioned.

H(f,x) be the channel magnitude at emitter state x. The
receiver measures
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with noise 7;. Removing means across snapshots and corre-
lating the pattern with the scalar outputs yields a frequency-
indexed statistic

CU) = 23 30 () = 5(0) (mic = m). - @)
k=1

Its inverse discrete Fourier transform recovers a delay profile
(a “ghost interferogram”)

p(r) = [IDFT{C(f)}]. 3)

whose prominent maxima occur at excess delays produced
by the scene. We extract a scalar observation y = 7 =
arg max, p(7).



b) Likelihood.: For a monostatic sensor at s = (s, Sy)
and candidate emitter position x = (z,y), the modeled delay
is

sl

B 1(x—s)"
T(X) c ) H‘F(x) - EHX_SHQ

c R1X2

“4)
with ¢ the propagation speed. To robustify against spurious
peaks due to multipath and interference, we adopt a Student-¢
likelihood

—ﬂ@ﬁ)”f7 s

p(y|x) <1+(y o2

with degrees of freedom v > 2 and scale o,. Accumulating
K spectral realizations improves precision; we model the
equivalent variance as

v 0'2

Rghost(K) = Var(y) ~ I/—QFZN

a€(05,1], (6)

where v/(v —2) o2 is the Gaussian-equivalent variance of the
Student-t and « captures decorrelation efficiency.

c) Filter updates.: In RBPF/RBPF-RB, each particle ¢
predicts 7(x;) and receives a weight increment via the Student-
t log-likelihood. In GM-PHD we linearize about component
means [i;:
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d) Closed-form MI bounds (GM-PHD).: Let the prior be
a Gaussian mixture with weights w;, means i, covariances
>;. We bracket the differential entropy of the mixture by (i)
a lower bound

Hig = —Zwilogzij(Mi§Mja Ei+zj)v ®)
i J

and (ii) an upper bound given by the entropy of the moment-
matched single Gaussian with covariance Eimm = 3 w;(E;+
uju;) — pp'. After a dwell of K snapshots at a fixed
viewpoint, the posterior covariances E; yield corresponding
bounds H{ and H{;;. The mutual information for the ghost
measurement lies in

Migos(K) € |Huip — Hip, Hos—Hig|, ©)

and we report the midpoint as a conservative estimate in scor-
ing. This integrates seamlessly into our depth-2 beam-search
planner by augmenting the per-action utility with MIgpos (/)
while the formal ActionGate enforces mission timers and no-
fly predicates.

e) Dwell-aware NBV.: We expose K as a decision vari-
able (“move” vs. “dwell”). Given a candidate action a with
dwell K, we evaluate the combined utility
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Fig. 2. Ghost-RF delay profile (normalized) with peak 7 (dashed) and

predicted component delays 7(u;) (thin lines, top-k annotated by weight).

f) Complexity & robustness.: The simu-
late—correlate-IFFT loop is O(K|F]|); MI updates are
per-component scalar covariance reductions. Heavy tails
absorb spurious peaks; higher K sharpens the main lobe. Our
TLA™ gate forbids dwell choices that violate mission timers
or energy bounds.

VI. CONCLUSION
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U(a, K) = AHpeartoa + MIghost(K) — A¢latency (K) — Ac energy(K) — A, risk(a).

(10)
In practice we precompute Rghos (/) on a small grid of K
and reuse the linearized updates for fast scoring.



