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TABLE I
GM-PHD MI ABLATION (STUDENT-t BEARINGS; MID = MIDPOINT OF

BOUNDS).

Prior set MIlb MImid MIub

Baseline (no OSINT) – – –
+ FCC licensing – – –
+ Wi-Fi / BSSID maps – – –
+ Building/permit graphs – – –
+ On-chain timing – – –
All priors (full) 0.000 0.882 1.763

Abstract—This paper presents a novel approach for Next-Best-
View (NBV) planning for Urban RF Geolocation, conditioned
by Open-Source Intelligence (OSINT). The system combines
information-theoretic NBV planning with formal verification
through TLA+ specifications to ensure safety invariants.

I. INTRODUCTION

II. NBV RESULTS

NBV Results (auto)
MI (nats): lb=0.000, mid=1.317, ub=2.635 Utility:
0.817 Cost: 0.500 Reff = 0.120.

Step Sensor x y

current 1 150.000 75.000
1 1 80.000 85.000
2 2 140.000 110.000

TLA+ ActionGate: PASS (states=13, distinct=3,
depth=2).
See Table I for GM-PHD MI ablation by prior.

III. NEXT-BEST-VIEW PLANNING APPROACH

IV. MI ABLATION ANALYSIS

V. GHOST-RF SINGLE-PIXEL RANGING

A. Ghost-RF single-pixel ranging under urban multipath

a) Measurement principle.: Inspired by ghost optical
coherence tomography (OCT), we replace a high-fidelity
per-frequency readout with a single-pixel integrated detector
whose scalar output varies as a known random spectral pattern
is applied [1]. Let sk(f) denote the known pattern at snapshot
k ∈ {1, . . . ,K} over discrete frequencies f ∈ F , and let
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Fig. 1. Depth-2 NBV plan: current → step-1 → step-2, OSINT-conditioned.

H(f,x) be the channel magnitude at emitter state x. The
receiver measures

mk =
∑
f∈F

|H(f,x)|2 sk(f)∆f + ηk, (1)

with noise ηk. Removing means across snapshots and corre-
lating the pattern with the scalar outputs yields a frequency-
indexed statistic

C(f) =
1

K − 1

K∑
k=1

(
sk(f)− s̄(f)

) (
mk − m̄

)
. (2)

Its inverse discrete Fourier transform recovers a delay profile
(a “ghost interferogram”)

p̂(τ) =
∣∣IDFTf{C(f) }

∣∣, (3)

whose prominent maxima occur at excess delays produced
by the scene. We extract a scalar observation y = τ̂ =
argmaxτ p̂(τ).



b) Likelihood.: For a monostatic sensor at s = (sx, sy)
and candidate emitter position x = (x, y), the modeled delay
is

τ(x) =
∥x− s∥2

c
, Hτ (x) =

1

c

(x− s)⊤

∥x− s∥2
∈ R1×2,

(4)
with c the propagation speed. To robustify against spurious
peaks due to multipath and interference, we adopt a Student-t
likelihood

p(y | x) ∝
(
1 +

(y − τ(x))2

ν σ2
τ

)− ν+1
2

, (5)

with degrees of freedom ν > 2 and scale στ . Accumulating
K spectral realizations improves precision; we model the
equivalent variance as

Rghost(K) = Var(y) ≈ ν

ν − 2

σ2
τ

Kα
, α ∈ (0.5, 1], (6)

where ν/(ν−2)σ2
τ is the Gaussian-equivalent variance of the

Student-t and α captures decorrelation efficiency.
c) Filter updates.: In RBPF/RBPF-RB, each particle i

predicts τ(xi) and receives a weight increment via the Student-
t log-likelihood. In GM-PHD we linearize about component
means µj :

Σ′
j =

(
Σ−1

j +Hτ (µj)
⊤Rghost(K)−1Hτ (µj)

)−1

. (7)

d) Closed-form MI bounds (GM-PHD).: Let the prior be
a Gaussian mixture with weights wj , means µj , covariances
Σj . We bracket the differential entropy of the mixture by (i)
a lower bound

HLB = −
∑
i

wi log
∑
j

wj N
(
µi;µj , Σi+Σj

)
, (8)

and (ii) an upper bound given by the entropy of the moment-
matched single Gaussian with covariance Σmm =

∑
j wj(Σj+

µjµ
⊤
j ) − µµ⊤. After a dwell of K snapshots at a fixed

viewpoint, the posterior covariances Σ′
j yield corresponding

bounds H ′
LB and H ′

UB. The mutual information for the ghost
measurement lies in

MIghost(K) ∈
[
HLB −H ′

UB, HUB −H ′
LB

]
, (9)

and we report the midpoint as a conservative estimate in scor-
ing. This integrates seamlessly into our depth-2 beam-search
planner by augmenting the per-action utility with MIghost(K)
while the formal ActionGate enforces mission timers and no-
fly predicates.

e) Dwell-aware NBV.: We expose K as a decision vari-
able (“move” vs. “dwell”). Given a candidate action a with
dwell K, we evaluate the combined utility

U(a,K) = ∆Hbear/ToA + MIghost(K) − λℓ latency(K) − λe energy(K) − λr risk(a).
(10)

In practice we precompute Rghost(K) on a small grid of K
and reuse the linearized updates for fast scoring.
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Fig. 2. Ghost-RF delay profile (normalized) with peak τ̂ (dashed) and
predicted component delays τ(µj) (thin lines, top-k annotated by weight).

f) Complexity & robustness.: The simu-
late–correlate–IFFT loop is O(K|F|); MI updates are
per-component scalar covariance reductions. Heavy tails
absorb spurious peaks; higher K sharpens the main lobe. Our
TLA+ gate forbids dwell choices that violate mission timers
or energy bounds.

VI. CONCLUSION
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