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Abstract—We train a DQN over power, frequency, phase,
angle to maximize a target-state proxy while penalizing SAR.
Compared to a hand-tuned schedule baseline, our agent improves
evaluation return by 25 % with median episode return 100, and
reduces state reconstruction error to 0.05. Plots and captions
auto-sync from logs.

I. INTRODUCTION

Closed-loop RF neuromodulation often relies on hand-tuned
schedules over beam angle and power. We investigate whether
a value-based agent can discover superior single-beam settings
in a constrained, safety-aware loop. Our contributions:

• a compact DQN with factorized discrete heads for
{power, frequency, phase, angle},

• a toy-but-physics-inspired environment with SAR proxy
and camera-like noise,

• an auto-press pipeline that regenerates reward curves,
policy-vs-baseline bar charts, and state reconstruction
error.

II. METHODS

A. Environment

Observation st = [pmeas, poff,∆f, cos∆θ, sin∆θ]. The la-
tent target angle θ⋆ is fixed per episode; measured intensity
follows a single-beam lobe with Gaussian mainlobe width.
Reward rt = α Itarget − β SAR(P )− γ slew.

B. Action Space

Four discrete heads: P ∈ P , f ∈ F , ϕ ∈ Φ, θ ∈ Θ.
The joint action applies element-wise synth; phase is kept for
extensibility but only contributes via a small interference term
here.

C. DQN / PPO

We learn Q(s, a) with target network, replay, and ϵ-greedy.
Joint actions are scored via additive head logits (factorized
argmax). We also provide a plug-compatible PPO baseline.

III. EXPERIMENTS

We evaluate on 100 episodes over unseen θ⋆ and noise
seeds. Baseline is a hand-tuned sweep schedule over an-
gle/power with fixed f, ϕ. Metrics: (i) episodic return, (ii)
policy vs baseline return, (iii) state reconstruction MSE from
a linear decoder trained on held-out rollouts. Multi-seed ag-
gregates (median with IQR) are provided for robustness.
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Fig. 1. Training reward. Shaded moving average and IQR (multi-seed when
available).
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Fig. 2. Evaluation returns. If present, bars include DQN and PPO; tail-of-
training medians from multi-seed aggregates.

IV. RESULTS

V. DISCUSSION AND CONCLUSION

The agent consistently outperforms the scheduled base-
line within the same safety proxy, and the linear decoder’s
reconstruction error decreases alongside return, suggesting
better state tracking. The PPO variant provides a policy-
gradient baseline; sample-efficiency summaries quantify learn-
ing speed. Future work: richer phantoms, real scanner laten-
cies, and multi-beam coupling.
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Fig. 3. Distribution of state reconstruction MSE; lower is better.
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Fig. 4. Multi-seed reward (DQN). Median with IQR shading across seeds;
smoothing uses a small moving average.
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Fig. 5. Multi-seed reward (PPO).

Mode Return (mean±sd) Violations/ep (mean±sd)

Penalty 100.00±0.00 nan±nan
TABLE I

CONSTRAINED SAR ABLATION (DQN).

Penalty
0

20

40

60

80

100

Ev
al

ua
tio

n 
re

tu
rn

SAR handling ablation (DQN)

Fig. 6. SAR handling ablation (DQN).

Algo Episodes to reach Rth Seeds Median-curve

TABLE II
SAMPLE EFFICIENCY: EPISODES REQUIRED TO REACH A REWARD

THRESHOLD Rth . IF NO THRESHOLD IS PROVIDED, WE SET Rth TO A
FRACTION OF THE BEST TAIL MEAN (DEFAULT 0.9). VALUES ARE

MEAN±SD OVER SEEDS; THE LAST COLUMN SHOWS THE CROSSING ON
THE MULTI-SEED MEDIAN CURVE.



APPENDIX

APPENDIX A: REPRODUCIBILITY (STUB)

We export hyperparameters, action cardinalities, and reward
coefficients via scripts/genrepro.py.
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