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Abstract—We propose a minimal path from complex base-
band to 3D situational volumes: voxelizing In-phase/Quadrature
(IQ)-derived spectrograms into time×frequency×channel cubes
(I/Q). On a synthetic anomaly-benchmark, voxelized volumes
outperform 2D spectrogram baselines for surfacing rare bursts
and narrowband spikes, with peak AUC 0.928 vs 0.850. Latency
remains tractable in a press-once pipeline (p99 5.5 ms vs 3.8 ms
at 0 dB). NeRF-style upgrades are optional: our simple envelope
works. Code and data are reproducible end-to-end.

I. INTRODUCTION

Operators drown in 2D plots under clutter. We ask: can
we shape complex baseband into a compact 3D field where
anomalies pop out with less cognitive friction? Our answer is
a no-drama voxelization: time×frequency×channels built from
FFT-derived magnitude plus light I/Q energy traces. No heavy
crypto, no brittle GANs—just enough geometry.

II. BACKGROUND

Spectrograms tile time and frequency, but they flatten channel
structure. Voxelization preserves an extra axis for channelized
cues and localized burst geometry. Prior 3D volumes in vision
motivate the shape, and Neural Radiance Fields (NeRF) [1]
hints at optional upgrades—but we show a simple envelope
suffices for anomaly surfacing. Our spectrograms use the fast
Fourier transform [2].

III. METHODS

a) From IQ to Voxels.: We compute a short-time FFT
magnitude, then resample it to a fixed T × F . We append
light I/Q energy channels, forming a T × F × C cube (C=2).
Normalization is either per-cube z-score, per-slice z-score, or
min–max.

b) Scoring.: A lightweight anomaly score averages the
top-k magnitudes across the cube; the spectrogram baseline
mirrors this in 2D.

c) Hook to Visualization.: Our pipeline mirrors your
process_rf_data surface: we build both voxel_data
and spectrum for RFVisualizationData, enabling 3D
overlays without breaking 2D dashboards.

IV. EXPERIMENTS

We synthesize mixed-modality complex baseband with
injected anomalies (bursts, chirps, spikes) across SNR ∈
[−10, 20] dB. For each SNR we score N=2000 exemplars
(25% anomalies). Headline comparison uses a mid-size cube
(32×32×2) with per-cube z-score. Ablations sweep cube size
and normalization. Latency budgets combine measured micro-
benchmarks and constant marshalling overheads.
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Fig. 1. Average ROC across SNRs: Voxel3D vs Spec2D. Voxel3D lifts the
curve under clutter.
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Fig. 2. Cube-size ablation: AUC vs SNR for 16×32×2, 32×32×2,
32×64×2.

V. RESULTS

VI. DISCUSSION

Why 3D helps. Localized bursts occupy compact regions
in the T×F slab and align with I/Q energy shifts; the extra
channel axis separates confounders.
NeRF optional. A small occupancy MLP could fuse T and F
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Fig. 3. Normalization ablation @ 0 dB. Cube z-score is robust; slice z-score
is close.
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Fig. 4. Latency budget (p50-ish) for Spec2D, Voxel3D, and an optional
NeRF-style path.

rays into a volumetric prior, but the simple envelope already
captures most wins at a fraction of the compute.

VII. RELATED WORK

2D spectrograms dominate RF dashboards; 3D volumes are
common in vision and medical imaging. Our contribution is an
RF-specific, compute-light voxelization that slots into existing
spectrogram pipelines.

VIII. LIMITATIONS

Synthetic data limits ecological validity; real RF chains and
sensors may shift latency constants by ≤ 2×. The anomaly
score is intentionally simple; stronger unsupervised models
could further improve ROC at added cost.

IX. CONCLUSION

Voxelized IQ turns complex baseband into a compact 3D
situational volume that surfaces anomalies better than 2D under

TABLE I
AUC AND TAIL LATENCY (P99, MS) BY SNR AND METHOD.

SNR (dB) AUCVoxel3D AUCSpec2D p99Voxel3D p99Spec2D

-10 0.636 0.834 5.5 3.8
-5 0.780 0.816 5.5 3.8
0 0.847 0.837 5.5 3.8
5 0.909 0.850 5.5 3.8
10 0.915 0.824 5.5 3.8
15 0.902 0.850 5.5 3.8
20 0.928 0.797 5.5 3.8

clutter, without exotic machinery. The press-once pipeline,
figures, and tables are fully reproducible.
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