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Abstract—We present a web-native neural visualization system
combining Three.js WebGL rendering with robust WebSocket
streaming for real-time voxel field display. Our client sustains 60
FPS with median latency ~20ms and p99 <50ms across 16°—
64> voxel densities, with JSONL telemetry and auto-figures for
reproducible analysis. The React/TypeScript client implements
exponential backoff reconnection, live performance monitoring
(p50/p99 latency tracking), and comprehensive metrics export
via JSONL format. Performance analysis demonstrates scalable
bandwidth utilization and consistent frame timing with stutter
rates below 2.5%. The complete implementation includes auto-
mated figure generation, statistical analysis tools, and a synthetic
data server for development and testing.

Index Terms—Three.js, WebSockets, Neural Visualization,
Real-time Rendering, WebGL, Performance Analysis

I. INTRODUCTION

Real-time visualization of neural activity data presents
unique challenges in web environments, requiring both high-
performance 3D rendering and reliable network streaming.
Traditional approaches rely on native applications or server-
side rendering, limiting accessibility and deployment flexibil-
ity. We address these limitations through a web-native archi-
tecture combining Three.js WebGL capabilities with robust
WebSocket communication.

Building on advances in RF-based neural sensing and neu-
romodulation, our system targets live brain imaging scenarios
where voxel field data must be streamed and rendered at
interactive frame rates. This extends visualization capabilities
for RF-derived neural data streams, supporting real-time mon-
itoring and control applications. Key requirements include: (1)
60 FPS rendering performance, (2) sub-20ms network latency
tolerance, (3) graceful handling of network interruptions, and
(4) comprehensive performance monitoring for production
deployment.

The contribution of this work is a complete, production-
ready implementation demonstrating that modern web tech-
nologies can meet demanding real-time visualization require-
ments without sacrificing performance or reliability.

II. SYSTEM ARCHITECTURE
A. Client-Side Rendering

The visualization client leverages Three.js for WebGL-
accelerated point cloud rendering. Voxel data is represented
as sparse point clouds, with occupancy thresholding applied
client-side to reduce vertex count. We render sparse voxel
clouds as a single THREE.Points with a preallocated

Float32BufferAttribute. Voxel occupancy > 6 (de-
fault & = 0.6) yields a compact index list; updates change only
the draw range to avoid memory reallocation during frame
updates.

The rendering pipeline implements frustum culling (90°
FOV exclusion) and two LOD tiers: full points for < 323
voxels, 50% decimation above 322 to stabilize frame time.
Camera controls provide standard orbit navigation with smooth
interpolation.

B. WebSocket Communication

Network communication employs WebSocket
connections  with  exponential  backoff  reconnec-
tion logic. Clients accept (1) JSON frames

({"dims": [X,Y,Z],"t":...,"values_bo64":
base64£32}) and (2) a binary format with a 12-byte
header (uint32 X,Y,Z) followed by raw Float 32 payload,
reducing CPU overhead by 30% vs. JSON.

Connection resilience uses jittered exponential backoff for
reconnect (base 250ms, cap 5, £50 ms jitter) with automatic
reconnection on network failures.

C. Performance Telemetry

For each received frame we log: receive time tyecy, draw
time tqraw, voxel count myoy, payload bytes b, and instanta-
neous FPS. We compute end-to-end latency A = tgraw — trecvs
maintain rolling percentiles (p50/p99) over the last 5000
frames, and export one JSONL line per frame. The plot-
ting script expects keys: ts_recv, ts_draw, frame_ms,
latency_ms, voxels, payload_bytes.

III. EXPERIMENTS AND RESULTS
A. Experimental Setup

We sweep voxel sizes 16° — 64 using the synthetic
WebSocket server, testing both JSON and binary modes.
We log 30,000 frames per condition and generate figures
via scripts/gen_neuroviz_figs.py from JSONL
telemetry data.

B. Performance Analysis

Figure 1 shows comprehensive performance analysis from
live traces. The latency histogram (left) demonstrates sub-
20ms pS0 performance with clear pS0/p99 markers. The
FPS vs. voxel count plot (middle) shows median FPS trends



across densities, while bandwidth analysis (right) reveals linear
scaling relationships.

A representative live run achieved p50 = 19.8 ms, p99 =
47.8ms, median FPS = 60.1 with stutter ratio = 2.1% for
frames exceeding 25 ms. Binary WebSocket format reduces
CPU overhead and stabilizes p99 latency compared to JSON
encoding.

Table I summarizes key distributional metrics from live
stream traces, demonstrating consistent performance across
varying network conditions and voxel densities.

C. Bandwidth Utilization

The sparse voxel representation provides significant com-
pression for typical neural data patterns, with 20-30% oc-
cupancy rates resulting in linear bandwidth scaling. Binary
format achieves 30% reduction in network overhead compared
to Base64 JSON encoding.

IV. WEB-NATIVE NEUROVIZ: THREE.JS + WEBSOCKETS

We present a web-native viewer that renders voxel fields at
60 fps via Three.js while ingesting live frames over a robust,
auto-reconnecting WebSocket (WS). The client emits a JSONL
metrics stream (latency, frame time, voxel count, payload size)
for offline analysis.

a) Client.: The React/TypeScript component
web/NeuralVisualization.tsx maintains a capped
point cloud (sparse occupancy above a threshold) using a
single THREE.Points buffer with draw-range updates.
The WS layer applies exponential backoff with jitter on

disconnect and measures end-to-end latency (fgraw — trecy)- A
sliding window tracks p50/p99 latency and live FPS.
b) Figures.: We parse the JSONL log with

scripts/gen_neuroviz_figs.py to produce: (a)
latency histogram with p50/p99 markers; (b) FPS vs voxel
count (per-frame scatter and median trend); (¢) FPS vs
bandwidth budget (bytes/s).

Latency histogram (p50=19.8ms, p99=47.8ms) FPS vs voxel count FPS vs bandwidth budget

Fig. 1. Live client performance. Left: latency distribution (p50/p99). Middle:
FPS vs voxel count. Right: FPS vs bandwidth budget.

c) Table.: We summarize key distributional metrics in
Table 1.

Metric Value

Latency p50 (ms) 19.8

Latency p99 (ms) 47.8

FPS median 60.1

FPS p5 45.0

Stutter ratio (>25ms)  0.021
TABLE T

LATENCY AND FPS SUMMARY FROM LIVE STREAM TRACES.

V. IMPLEMENTATION DETAILS
The complete system includes:

o React/TypeScript client
(web/NeuralVisualization.tsx)

« Node.js WebSocket server with synthetic data generation

o Python figure generation pipeline
(scripts/gen_neuroviz_figs.py)

o Automated build system with LaTeX integration

component

All source code and documentation are available for imme-
diate deployment and customization.

VI. CONCLUSION

We demonstrate that modern web technologies can achieve
the performance requirements for real-time neural visualiza-
tion applications. The combination of Three.js WebGL ren-
dering and robust WebSocket communication provides a scal-
able, accessible alternative to traditional native visualization
solutions.

Future work includes investigating WebRTC data channels
for ultra-low latency scenarios and implementing adaptive
quality control based on network conditions.
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