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Abstract—We present a web-native neural visualization system
combining Three.js WebGL rendering with robust WebSocket
streaming for real-time voxel field display. Our client sustains 60
FPS with median latency ∼20 ms and p99 <50 ms across 163–
643 voxel densities, with JSONL telemetry and auto-figures for
reproducible analysis. The React/TypeScript client implements
exponential backoff reconnection, live performance monitoring
(p50/p99 latency tracking), and comprehensive metrics export
via JSONL format. Performance analysis demonstrates scalable
bandwidth utilization and consistent frame timing with stutter
rates below 2.5%. The complete implementation includes auto-
mated figure generation, statistical analysis tools, and a synthetic
data server for development and testing.

Index Terms—Three.js, WebSockets, Neural Visualization,
Real-time Rendering, WebGL, Performance Analysis

I. INTRODUCTION

Real-time visualization of neural activity data presents
unique challenges in web environments, requiring both high-
performance 3D rendering and reliable network streaming.
Traditional approaches rely on native applications or server-
side rendering, limiting accessibility and deployment flexibil-
ity. We address these limitations through a web-native archi-
tecture combining Three.js WebGL capabilities with robust
WebSocket communication.

Building on advances in RF-based neural sensing and neu-
romodulation, our system targets live brain imaging scenarios
where voxel field data must be streamed and rendered at
interactive frame rates. This extends visualization capabilities
for RF-derived neural data streams, supporting real-time mon-
itoring and control applications. Key requirements include: (1)
60 FPS rendering performance, (2) sub-20ms network latency
tolerance, (3) graceful handling of network interruptions, and
(4) comprehensive performance monitoring for production
deployment.

The contribution of this work is a complete, production-
ready implementation demonstrating that modern web tech-
nologies can meet demanding real-time visualization require-
ments without sacrificing performance or reliability.

II. SYSTEM ARCHITECTURE

A. Client-Side Rendering

The visualization client leverages Three.js for WebGL-
accelerated point cloud rendering. Voxel data is represented
as sparse point clouds, with occupancy thresholding applied
client-side to reduce vertex count. We render sparse voxel
clouds as a single THREE.Points with a preallocated

Float32BufferAttribute. Voxel occupancy ≥ θ (de-
fault θ = 0.6) yields a compact index list; updates change only
the draw range to avoid memory reallocation during frame
updates.

The rendering pipeline implements frustum culling (90°
FOV exclusion) and two LOD tiers: full points for ≤ 323

voxels, 50% decimation above 323 to stabilize frame time.
Camera controls provide standard orbit navigation with smooth
interpolation.

B. WebSocket Communication

Network communication employs WebSocket
connections with exponential backoff reconnec-
tion logic. Clients accept (1) JSON frames
({"dims":[X,Y,Z],"t":...,"values_b64":
base64f32}) and (2) a binary format with a 12-byte
header (uint32 X,Y,Z) followed by raw Float32 payload,
reducing CPU overhead by 30% vs. JSON.

Connection resilience uses jittered exponential backoff for
reconnect (base 250 ms, cap 5 s, ±50 ms jitter) with automatic
reconnection on network failures.

C. Performance Telemetry

For each received frame we log: receive time trecv, draw
time tdraw, voxel count nvox, payload bytes b, and instanta-
neous FPS. We compute end-to-end latency ∆ = tdraw−trecv,
maintain rolling percentiles (p50/p99) over the last 5000
frames, and export one JSONL line per frame. The plot-
ting script expects keys: ts_recv, ts_draw, frame_ms,
latency_ms, voxels, payload_bytes.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

We sweep voxel sizes 163 → 643 using the synthetic
WebSocket server, testing both JSON and binary modes.
We log 30,000 frames per condition and generate figures
via scripts/gen_neuroviz_figs.py from JSONL
telemetry data.

B. Performance Analysis

Figure 1 shows comprehensive performance analysis from
live traces. The latency histogram (left) demonstrates sub-
20ms p50 performance with clear p50/p99 markers. The
FPS vs. voxel count plot (middle) shows median FPS trends



across densities, while bandwidth analysis (right) reveals linear
scaling relationships.

A representative live run achieved p50 = 19.8 ms, p99 =
47.8 ms, median FPS = 60.1 with stutter ratio = 2.1% for
frames exceeding 25 ms. Binary WebSocket format reduces
CPU overhead and stabilizes p99 latency compared to JSON
encoding.

Table I summarizes key distributional metrics from live
stream traces, demonstrating consistent performance across
varying network conditions and voxel densities.

C. Bandwidth Utilization

The sparse voxel representation provides significant com-
pression for typical neural data patterns, with 20-30% oc-
cupancy rates resulting in linear bandwidth scaling. Binary
format achieves 30% reduction in network overhead compared
to Base64 JSON encoding.

IV. WEB-NATIVE NEUROVIZ: THREE.JS + WEBSOCKETS

We present a web-native viewer that renders voxel fields at
60 fps via Three.js while ingesting live frames over a robust,
auto-reconnecting WebSocket (WS). The client emits a JSONL
metrics stream (latency, frame time, voxel count, payload size)
for offline analysis.

a) Client.: The React/TypeScript component
web/NeuralVisualization.tsx maintains a capped
point cloud (sparse occupancy above a threshold) using a
single THREE.Points buffer with draw-range updates.
The WS layer applies exponential backoff with jitter on
disconnect and measures end-to-end latency (tdraw − trecv). A
sliding window tracks p50/p99 latency and live FPS.

b) Figures.: We parse the JSONL log with
scripts/gen_neuroviz_figs.py to produce: (a)
latency histogram with p50/p99 markers; (b) FPS vs voxel
count (per-frame scatter and median trend); (c) FPS vs
bandwidth budget (bytes/s).
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Fig. 1. Live client performance. Left: latency distribution (p50/p99). Middle:
FPS vs voxel count. Right: FPS vs bandwidth budget.

c) Table.: We summarize key distributional metrics in
Table I.

Metric Value

Latency p50 (ms) 19.8
Latency p99 (ms) 47.8
FPS median 60.1
FPS p5 45.0
Stutter ratio (>25ms) 0.021

TABLE I
LATENCY AND FPS SUMMARY FROM LIVE STREAM TRACES.

V. IMPLEMENTATION DETAILS

The complete system includes:
• React/TypeScript client component

(web/NeuralVisualization.tsx)
• Node.js WebSocket server with synthetic data generation
• Python figure generation pipeline

(scripts/gen_neuroviz_figs.py)
• Automated build system with LaTeX integration
All source code and documentation are available for imme-

diate deployment and customization.

VI. CONCLUSION

We demonstrate that modern web technologies can achieve
the performance requirements for real-time neural visualiza-
tion applications. The combination of Three.js WebGL ren-
dering and robust WebSocket communication provides a scal-
able, accessible alternative to traditional native visualization
solutions.

Future work includes investigating WebRTC data channels
for ultra-low latency scenarios and implementing adaptive
quality control based on network conditions.
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