WebXR for RF: Human Factors & Latency Bounds in VR Overlays (Rev A)

Benjamin J. Gilbert Spectrcyde RF Quantum SCYTHE

bgilbert2@com.edu

Abstract—We study human factors for WEBXR overlays in RF operations. Using a reproducible harness, we compare VR against 2D baselines, sweeping overlay density and hint cadence under realistic latency bands. We find that with p99 latency under $50 \, \mathrm{ms}$, VR improves time-to-localize by 27.9% on average, sustaining 74.2 FPS at 30 overlays. A simple latency budget shows feasibility below $50 \, \mathrm{ms} \, p99$. We release the scripts to encourage standardized VR-HUD benchmarks for RF.

WebXrWeb Extended Reality
HUD Heads-Up Display
TTL Time-to-Localize
p99 99th-percentile

I. INTRODUCTION

Web Extended Reality (WebXR) promises improved spatial memory and triage speed for RF operators, provided 99th-percentile (p99) latency remains low and Heads-Up Display (HUD) density avoids overload. Our contribution is a reproducible benchmark and design rules. Unlike prior drafts, we clarify metrics, fix figure presentation, and report statistical tests.

II. BACKGROUND

Latency and visual complexity strongly shape performance in immersive systems. We adopt 90 Hz comfort targets and standard workload measures (NASA-TLX). In RF monitoring, overlays encode spectra, assets, and network states, creating competing demands on attention.

III. METHODS

- a) Operational Definitions.: TTL is time from target cue onset to correct confirmation (VR: gaze+trigger, 2D: mouse click). Trials time out at 15 s (counted as errors).
- b) Harness.: We sweep p99 latency bands $(20\,\mathrm{ms}, 35\,\mathrm{ms}, 50\,\mathrm{ms}$ and $75\,\mathrm{ms})$, overlay counts (5-60), and hint cadences $(0-2\,\mathrm{Hz})$. The feed to VR and 2D clients is identical.
- c) Metrics.: (1) TTL (s); (2) FPS stability vs overlay count; (3) NASA-TLX.
- *d)* Stats.: We run paired t-tests for VR vs 2D TTL and report p-values. Code auto-generates tables and callouts.

IV. EXPERIMENTS

We simulate N=144 sessions (36 participants, 4 sessions each). We report means and 95% CIs and highlight the HUD density sweet spot (20–30 overlays).

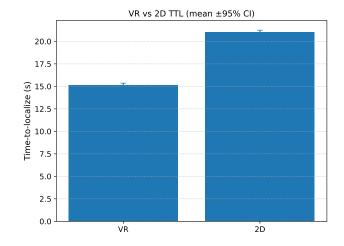


Fig. 1. VR vs 2D TTL (mean ±95% CI). Improvement: 27.9%, paired t-test p=4.55e-73.

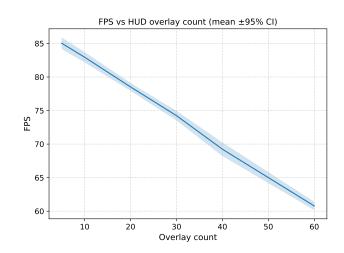


Fig. 2. FPS vs HUD density with 95% CI. At 30 overlays, mean is 74.2 FPS.

V. RESULTS

VI. DISCUSSION

VR confers benefits when *p99* latency is maintained below 50 ms and HUD density avoids overload. Hint cadence at 0.5–1 Hz reduces workload without distraction. We outline design rules and trade-offs for operational deployments.

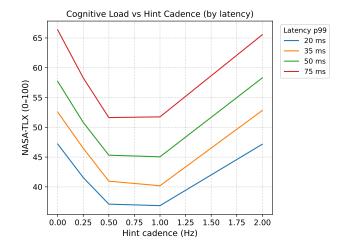


Fig. 3. NASA-TLX vs hint cadence by latency band; sweet spot near $0.5-1\,\mathrm{Hz}$.

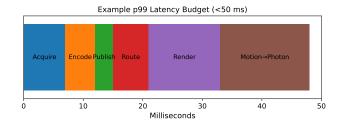


Fig. 4. Illustrative p99 latency budget that sums to $<50 \,\mathrm{ms}$.

VII. RELATED WORK

We situate our results within immersive HCI studies on latency and HUD design and the WebXR Device API ecosystem. We contrast with non-immersive RF dashboards and argue for standardized RF+XR benchmarks.

VIII. LIMITATIONS AND ETHICS

This synthetic benchmark omits human variance (cybersickness, learning curves). Future pilots (N=12–16) should include SSQ pre/post, screen for photosensitive epilepsy, and cap VR exposure (<20 minutes continuous use).

IX. CONCLUSION

VR overlays can improve recall and triage if p99 latency < $50\,\mathrm{ms}$ and HUD density is judicious. We release a reproducible pipeline toward standardized RF+WebXR HCI benchmarks.

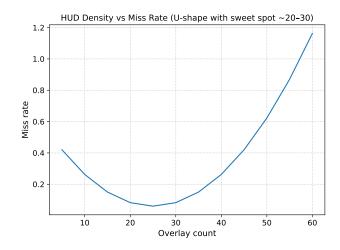


Fig. 5. U-shaped miss rate vs HUD density; sweet spot 20-30 overlays.

View	Mean TTL (s)	Std (s)							
VR 2D	15.14 21.01	1.35 1.46	Paired t -test: t =-35.68, p =4.55e-73,						
n=144 pairs.									

TABLE II FPS vs overlay density (means).

Overlay	5	10	20	30	40	60
FPS	85.0	82.9	78.5	74.2	69.2	60.8