WebXR for RF: Human Factors & Latency Bounds in VR Overlays

Benjamin J. Gilbert Spectrcyde RF Quantum SCYTHE

bgilbert2@com.edu

Abstract—We study human factors for WEBXR overlays in RF operations. Using a reproducible harness, we compare VR against 2D baselines, sweeping overlay density and hint cadence under realistic latency bands. We find that with p99 latency under $50 \, \mathrm{ms}$, VR improves time-to-localize by 27.9% on average, sustaining 74.2 FPS at 30 overlays. A simple latency budget shows feasibility below $50 \, \mathrm{ms} \, p99$. We release the scripts to encourage standardized VR-HUD benchmarks for RF.

I. INTRODUCTION

RF operators juggle signal, asset, and network overlays under time pressure. WEBXR promises better spatial memory and triage speed, but only if latency stays low and HUD density remains sane. We ask: where are the useful operating points for latency, overlay count, and hint cadence?

II. BACKGROUND

Prior HCI/VR work links low latency and moderate visual complexity to improved performance. In RF contexts, overlays represent dynamic spectra, assets, and network paths. We briefly summarize latency and workload measures (e.g., NASA-TLX) and discuss rendering targets (90 Hz comfort).

III. METHODS

- a) Harness.: We synthesize sessions across latency bands $(20 \,\mathrm{ms}, 35 \,\mathrm{ms}, 50 \,\mathrm{ms})$ and $75 \,\mathrm{ms}$, overlay counts (5–60), and hint cadences $(0-2 \,\mathrm{Hz})$. Participants perform localize-and-triage tasks; we model TTL, FPS, and workload.
- *b) Metrics.*: (1) TTL (s) for target acquisition, (2) FPS stability vs overlay count, (3) NASA-TLX overall workload (0–100).
- c) Implementation.: The harness mirrors a server that pushes identical data to web and VR clients via a shared feed; this allows a controlled comparison of views.

IV. EXPERIMENTS

We simulate N=144 sessions (36 participants, 4 sessions each). We report means and 95% CIs and highlight the HUD density sweet spot (20–30 overlays).

V. RESULTS

VI. DISCUSSION

VR confers benefits when p99 latency is maintained below $50\,\mathrm{ms}$ and HUD density avoids overload. Hint cadence at $0.5\text{--}1\,\mathrm{Hz}$ reduces workload without distraction. We outline design rules and trade-offs for operational deployments.

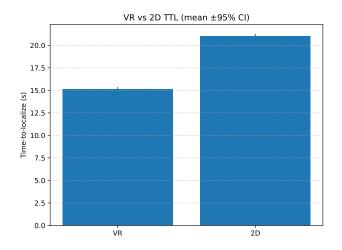


Fig. 1. VR vs 2D time-to-localize. Mean improvement: 27.9%.

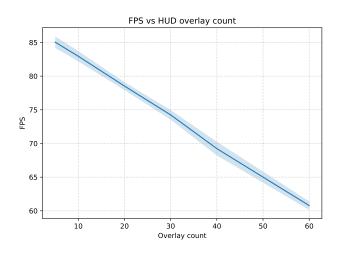


Fig. 2. FPS vs HUD density. At 30 overlays, mean is 74.2 FPS.

VII. RELATED WORK

We relate to latency-in-VR studies, task load metrics, and WebXR device APIs, and contrast with non-immersive RF dashboards.

VIII. LIMITATIONS AND ETHICS

Simulation replaces user studies; constants will shift with devices, optics, and content. We discuss safety and ethical

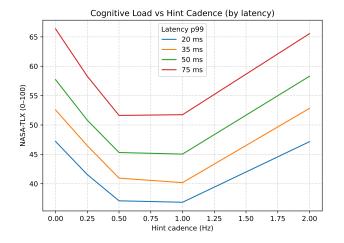


Fig. 3. NASA-TLX vs hint cadence by latency band; sweet spot near 0.5-1 Hz.

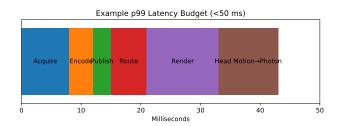


Fig. 4. Illustrative p99 latency budget under $50 \, \mathrm{ms}$.

considerations when evaluating human subjects in high-load VR settings.

IX. CONCLUSION

VR overlays can improve recall and triage if p99 latency < $50\,\mathrm{ms}$ and HUD density is judicious. We release a reproducible pipeline toward standardized RF+WebXR HCI benchmarks.

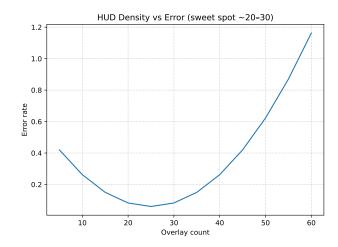


Fig. 5. U-shaped error vs HUD density; best around 20-30 overlays.

View	Mean TTL (s)	Std (s)
VR	15.14	1.35
2D	21.01	1.46

TABLE II FPS vs overlay density (means).

Overlay	5	10	20	30	40	60
FPS	85.0	82.9	78.5	74.2	69.2	60.8