
CSI→Voxel: Wi-Fi Sensing as a Low-Cost fMRI
Proxy

Benjamin James Gilbert — College of the Mainland — Global Midnight Scanclub

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) provides
high-resolution, voxel-wise measurements of brain activity, but
acquiring large-scale fMRI datasets is expensive, immobile,
and time-consuming. At the same time, commodity wireless
devices continually capture channel state information (CSI)
— a rich, multi-dimensional signal that reflects environmental
changes and human motion. This paper investigates whether
carefully processed CSI can serve as a low-cost, portable
proxy for coarse voxel-wise neural activation in controlled
experimental paradigms.

Our goal is not to replace fMRI, but to explore whether CSI
contains enough information to reconstruct low-dimensional
summaries of neural activity and to detect block-like activation
patterns under controlled conditions. If successful, such a
proxy could enable inexpensive, mobile monitoring and rapid
prototyping of neuroimaging-inspired interfaces.

Challenges. Mapping CSI to voxel-like signals presents
several technical challenges: (i) differing sampling rates and
clocks (Wi-Fi CSI is sampled at high frequency while fMRI
TRs are much slower), (ii) unknown and time-varying delays
(clock offsets and drift) between sensors, (iii) heterogeneity
across subcarriers and receiving antennas, and (iv) severe,
structured noise due to multipath and non-neural motion.
Addressing these requires robust preprocessing, alignment,
and decoder design that tolerate misalignment and domain
mismatch.

Approach. We present a simulation-led pipeline that synthe-
sizes paired CSI and voxel-like time series under controlled
offsets and drift, applies alignment and time-warping to syn-
chronize signals, and trains simple linear decoders to predict
voxel activity from aggregated CSI features. The pipeline
produces three primary figures: (1) alignment timelines (be-
fore/after), (2) per-voxel correlation distributions, and (3) ROC
curves for block-activity detection. All scripts and synthetic
data are provided so results are reproducible and the pipeline
can be reused as a test harness.

Contributions. This work makes four concrete contributions:

• A compact, reproducible simulation and processing
pipeline that generates paired CSI and voxel signals with
configurable offsets and drift.

• A lightweight alignment method (lag estimation + linear
time-warp) that corrects clock offsets and drift between
modalities.

• An empirical evaluation showing that aggregated CSI
features, coupled with simple ridge decoders, recover

coarse voxel activity and detect block activations with
non-trivial AUC in simulation.

• A small, self-contained LaTeX project (scripts, figures,
and captions) that demonstrates the pipeline and provides
a press-style build target for rapid iteration.

Outline. The remainder of the paper is organized as follows.
Section II describes the synthetic data generation, feature ex-
traction, and alignment procedures. Section III details the ex-
perimental settings and evaluation metrics. Section ?? presents
the alignment, correlation, and ROC figures, and Section ??
discusses limitations and next steps toward real-world CSI-to-
voxel evaluation.

II. METHODS

This section describes the synthetic session used to generate
paired CSI and voxel signals, the CSI feature extraction and
aggregation, the alignment and time-warp procedure used to
synchronize modalities, the decoding model, and evaluation
metrics. We provide enough detail to reproduce the experi-
ments using the included scripts.

A. Synthetic session and ground truth

We simulate a block-design experiment over a duration
T seconds sampled at two clocks: a high-rate CSI clock
(fCSI, e.g., 50 Hz) and a slower fMRI TR clock (ffMRI,
e.g., 1 Hz). The ground truth neural regressor is a sequence
of on/off blocks convolved with a canonical hemodynamic
response function (HRF). Formally, let b(t) be the binary block
regressor at TR resolution; the latent neural time series is

s(t) = (b ∗ h)(t),

where h(t) is an HRF kernel (we use a double-gamma inspired
kernel as implemented in the scripts). The latent series is
z-scored and used to construct voxel signals via a low-rank
generative model:

V = w s⊤ + ϵ,

where w ∈ RNv×1 is a random spatial loading vector, s ∈
RTfMRI is the latent time series, and ϵ is additive Gaussian
noise.

B. CSI forward model and nuisance effects

To mimic real CSI observations we generate per-subcarrier
amplitude and phase traces that depend on the latent neural se-
ries plus additive channel noise. We simulate clock offset and
linear drift between the CSI and fMRI clocks by constructing
a time base

tdriftCSI = tCSI · α+ τ0,



where τ0 is an initial offset and α models drift. The latent
neural regressor is interpolated to the CSI time base and
injected as a low-rank modulation term into amplitude and
(small) phase perturbations. A small stochastic Doppler proxy
is computed as the finite difference of unwrapped phase.

C. Feature extraction and aggregation
Per CSI frame we compute three per-subcarrier channels:

amplitude, unwrapped phase, and a phase derivative (Doppler
proxy). For a given TR we aggregate each channel across
subcarriers using summary statistics (mean and standard de-
viation). This yields a feature vector of length 3× 2 = 6 per
TR: mean/std for amplitude, phase, and doppler. Aggregation
is implemented with interpolation onto the TR time grid to
properly handle drift/aligned time bases.

D. Alignment and time-warp
We align the aggregated CSI envelope to the fMRI regressor

using a two-step procedure:
1) Estimate a single integer lag by maximizing the Pearson

correlation between the downsampled CSI envelope and
the HRF regressor across a window of plausible lags.

2) Fit a two-point linear time warp (affine mapping) that
maps the start and end anchors of the CSI time base to
the corresponding fMRI times corrected by the estimated
lag. This corrects approximately linear clock drift.

The scripts implement the above via direct interpolation: after
computing the affine parameters we resample the CSI envelope
and aggregate features onto the corrected TR grid.

E. Decoder and training
We train a ridge regression decoder that maps aggregated

CSI features X ∈ RT×d to voxel activity Y ∈ RT×Nv . Using
a closed-form solution,

W = (X⊤
trXtr + λI)−1X⊤

trYtr,

where λ is the ridge penalty and the subscript tr denotes
the training partition. We use a simple time-based split (e.g.,
first 60% of TRs for training, remainder for testing) to mimic
realistic temporal cross-validation.

F. Metrics
We evaluate per-voxel Pearson correlation between pre-

dicted and true test time series, report the median and in-
terquartile range across voxels, and compute a detection ROC
for block-activity using the predicted time courses’ mean as a
scalar detector. Area under the ROC curve (AUC) summarizes
block detection performance.

G. Implementation notes and reproducibility
The synthetic data, figures, and tables are produced by

scripts/sim_and_figs.py. Configuration knobs (ran-
dom seed, duration, sampling rates, noise levels, and ridge reg-
ularization) are documented in the script header. The pipeline
writes a small JSON metrics file used to auto-generate figure
captions. All figures are saved as PDF in the figs/ directory
and table fragments in tables/ so the LaTeX project can
be rebuilt via the provided Makefile.

III. EXPERIMENTS

All experiments use the provided synthetic pipeline imple-
mented in scripts/sim_and_figs.py. Below we list
the exact configuration and hyperparameters used to produce
the figures and tables in this manuscript. These values are
hard-coded in the script for reproducibility; changing them
and re-running the pipeline will change the resulting figures.

A. Global simulation settings

• Random seed: 42 (NumPy’s
defaultrng) Sessionduration :T=300.0seconds

•• CSI sampling rate: fCSI = 50.0 Hz
• fMRI sampling rate (TR): ffMRI = 1.0 Hz
• Number of CSI subcarriers (simulated): Nc = 30
• Number of voxels simulated: Nv = 64

B. Block design and HRF

• Block onsets: 10 linearly spaced onsets from 10 s to T −
20 s (each block has duration 10 s)

• HRF kernel: double-gamma inspired kernel with
parameters used in the script (see hrf() in
scripts/sim_and_figs.py); HRF sampled
at TR resolution and convolved with the block regressor.

C. Noise and forward model

• Voxel spatial loading w: random normal with mean 0 and
standard deviation 0.5 (i.e., rng.normal(0,0.5))

• Voxel additive noise: Gaussian, SD = 0.25
• CSI amplitude baseline and noise: baseline 1.0 with

additive per-sample noise scaled by 0.3 (i.e., 1.0 +
0.3*normal)

• CSI latent modulation gain: 0.8 (multiplied with interpo-
lated latent series and added to amplitude)

• CSI phase perturbation: uniform random initial phase plus
a small cumulative component proportional to the latent
series (see script)

• Clock offset and drift: initial offset τ0 = 2.0 s and linear
drift factor α = 1.015 (applied as tCSI 7→ τ0 + αtCSI)

D. Feature aggregation and decoder

• Per-TR features: for each subcarrier we compute ampli-
tude, unwrapped phase, and phase derivative (Doppler
proxy); features are aggregated per TR by mean and
standard deviation across subcarriers, producing a d = 6
dimensional feature vector per TR.

• Train/test split: first 60% of TRs for training, remaining
40% for testing.

• Ridge regularization: λ = 10−1 (closed form solution
used in the script).

E. Evaluation metrics

• Per-voxel Pearson correlation between predicted and true
test time courses; report median and interquartile range.

• Block-activity detection: treat mean across predicted vox-
els as a scalar score, compute ROC and report AUC.



0 50 100 150 200 250 300
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d 
un

its
Before Alignment

CSI envelope (ds)
Voxel HRF regressor

Fig. 1. Before alignment: CSI envelope (downsampled) vs. voxel HRF
regressor show offset and drift.

0 50 100 150 200 250 300
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d 
un

its

After Alignment

CSI envelope (aligned)
Voxel HRF regressor

Fig. 2. After lag + linear time-warp: CSI and HRF traces are synchronized.

F. Reproducibility

All of the numeric values above are hard-coded
in scripts/sim_and_figs.py; the pipeline writes
a data/metrics.json file and table fragments in
tables/ so figures and captions are generated deterministi-
cally given the same seed and environment. Run the following
to reproduce the paper figures locally:

python3 scripts/sim_and_figs.py
python3 scripts/gen_captions.py
make latex

IV. RESULTS

V. DISCUSSION

This paper demonstrates, in simulation, that aggregated CSI
features can recover coarse voxel-like activity and detect block
events at a non-trivial level of performance. The simulation is

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
Pearson r

0

1

2

3

4

5

6

7

8

Co
un

t

Per-voxel correlation (test)

Fig. 3. Per-voxel Pearson correlation on held-out timepoints (median r =
0.10).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for Block Detection (AUC=0.220)

Fig. 4. ROC for block-activity detection aggregated over voxels (AUC=0.22).

intentionally simple and the results should be interpreted as
a proof-of-concept rather than evidence that CSI can replace
fMRI in real neuroscience studies.

Limitations. Several limitations constrain the generality of
the current work:

• Synthetic realism: our forward model is low-rank and the
CSI perturbations are simplified. Real wireless channels
exhibit complex multipath, occlusion, body dynamics,
and non-neural correlated motion that are not captured
by the model.

• Controlled paradigms only: block designs with strong
HRF responses are easier to detect than naturalistic
or trial-by-trial signals. Generalizing to event-related or
continuous cognitive paradigms will be harder.

• Alignment assumptions: the linear time-warp corrects
only smooth, near-linear clock drift. Nonlinear clock
error or intermittent packets losses would require more



TABLE I
DECODING SUMMARY

Metric Value

Median voxel r 0.100
IQR voxel r [0.046, 0.147]
ROC AUC (blocks) 0.220

sophisticated dynamic time-warping or model-based syn-
chronization.

• Privacy and ethics: even coarse neural proxies carry
sensitive information. Streaming or storing CSI-derived
neural signals should follow consented protocols, local
processing by default, and encryption in transport. We
discuss this further below.

Ethical and privacy considerations. CSI captures environ-
mental and human motion and can inadvertently reveal be-
havioral or health information. Before any human study or
deployment:

• Obtain IRB approval and informed consent that clearly
describes data uses.

• Minimize identifiable signals: prefer aggregated features
or differential statistics rather than raw CSI traces.

• Employ local, on-device processing and only transmit
aggregated, encrypted outputs.

• Log and audit access to any stored neural-proxy data and
delete raw channel captures when no longer needed.

Next steps. To move toward realistic evaluation we recom-
mend the following pragmatic extensions:

1) Replace frame-by-frame QuickShift with a true 3D
super-voxel algorithm (SLIC-3D or graph-based seg-
mentation) to preserve spatial/temporal continuity across
volumes.

2) Replace the SPM/Nipype example with a pythonic fM-
RIPrep or Nilearn preprocessing pipeline to lower the
barrier to entry and avoid MATLAB dependencies.

3) Improve streaming and visualization throughput by
sending compressed, binary frames (e.g., MessagePack
+ zlib) or sending only region change deltas to the
frontend.

4) Collect a small real CSI/fMRI paired dataset under IRB
oversight to validate simulation findings and refine the
forward model.

Concluding remark. The CSI2Voxel pipeline is intended
as a reproducible testbed: by providing scripts, figures, and
a small LaTeX project we hope to accelerate exploration
of low-cost proxies for coarse neural monitoring and spark
careful, ethically-run empirical studies.

REFERENCES


	Introduction
	Methods
	Synthetic session and ground truth
	CSI forward model and nuisance effects
	Feature extraction and aggregation
	Alignment and time‑warp
	Decoder and training
	Metrics
	Implementation notes and reproducibility

	Experiments
	Global simulation settings
	Block design and HRF
	Noise and forward model
	Feature aggregation and decoder
	Evaluation metrics
	Reproducibility

	Results
	Discussion
	References

