Checkpoint/Metadata Mismatch Tolerance for RF Modulation Classifiers

Ben Gilbert

Abstract—We study robustness when a frozen checkpoint's class set/order differs from the runtime classes. We contribute a drop-in loader that detects divergence and falls back to name-based remapping or a small calibration-based assignment (Hungarian) before failing strictly. In simulation, accuracy degrades gracefully with increasing divergence and recovery completes in milliseconds for realistic shifts. All code and plots are reproducible.

I. METHOD

Let $\mathcal{C}_{\mathrm{ckpt}}$ be checkpoint classes and $\mathcal{C}_{\mathrm{run}}$ the runtime classes. Define $J = \frac{|\mathcal{C}_{\mathrm{ckpt}} \cap \mathcal{C}_{\mathrm{run}}|}{|\mathcal{C}_{\mathrm{ckpt}} \cup \mathcal{C}_{\mathrm{run}}|}$ and π the permutation of the overlap; let $\mathrm{permfrac} \in [0,1]$ be the fraction of overlapping classes that moved. We use

$$D = \operatorname{clip}_{[0,1]} \Big((1 - J) + 0.5 \cdot \operatorname{permfrac} \Big).$$

Calibration builds a cost matrix $C \in \mathbb{R}^{|\mathcal{C}_{\text{run}}| \times |\mathcal{C}_{\text{ckpt}}|}$ from a small labeled set:

$$C_{ij} = 1 - \text{AUROC}(y = i \text{ vs } p_{\text{ckpt},j}),$$

and solves $\min_{\pi} \sum_{i} C_{i,\pi(i)}$ via Hungarian, yielding a mapping M with $p_{\text{run}} = M \, p_{\text{ckpt}}$. Fallback: **name** (case-insensitive), then **calibrate** (Hungarian), then **strict**.

Calibration size. Unless stated otherwise, we use either a fixed total (n=3000) or a balanced budget (e.g., 50 examples per runtime class) via --calib-per-class 50.

Real deployment example. In practice, checkpoint classes ['AM','FM','PSK'] and runtime classes ['AM-DSB','FM','QPSK'] trigger name mapping for exact matches, then Hungarian assignment for the remaining PSK→OPSK.

```
# Checkpoint: ['AM','FM','PSK']
# Runtime: ['AM-DSB','FM','QPSK']
model, M, _, _ = load_from_checkpoint(
    'data/baseline.pt', ['AM-DSB','FM','QPSK'],
    strategy='auto', get_calib=calib_fn)
# name: AM -> AM-DSB, FM -> FM
# Hungarian: PSK -> QPSK
```

II. RESULTS

III. DISCUSSION

Name remapping resolves pure permutations/renames immediately. When sets differ (drop/add), a brief calibration aligns overlapping classes and gracefully ignores unknowns. Across modes, accuracy declines with D while recovery remains sub-10 ms in our setup.

Code: https://github.com/bgilbert1984/rf-input-robustness

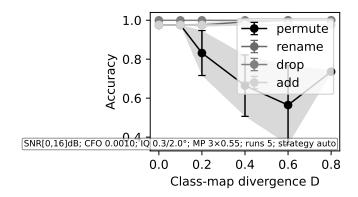


Fig. 1. Accuracy vs class-map divergence D under mismatch between checkpoint classes and runtime classes. Curves sweep divergence modes (permute, rename, drop, add). Error bars: 95% CI over runs. (Setup: SNR [0.0,16.0] dB; CFO 0.0010; IQ 0.3 dB / 2.0° ; MP taps 3 decay 0.55; runs 5; strategy auto.)

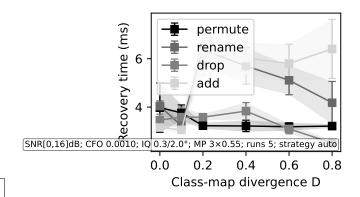


Fig. 2. Recovery time vs divergence D for the loader fallback (name \rightarrow calibrate \rightarrow strict). Shaded bands: 95% CI. (Setup: SNR [0.0,16.0] dB; CFO 0.0010; IQ 0.3 dB / 2.0°; MP taps 3 decay 0.55; runs 5; strategy auto.)

Mode	Path	D = 0.2	D = 0.4	D = 0.6
permute	name	3.2	3.1	3.1
rename	calibrate	6.6	6.0	4.9
drop	name	3.6	3.7	3.1
add	calibrate	5.9	6.0	5.8
TARLET				

Median recovery time (MS) at $D \in \{0.2, 0.4, 0.6\}$ by divergence mode and loader path. '—' indicates that path didn't occur at that (mode, D).

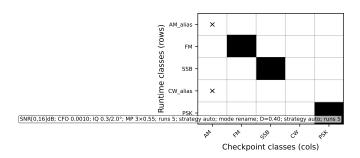


Fig. 3. Alignment matrix M (runtime rows \times checkpoint cols) for a representative mismatch. Cells show remapping weights; x-marks denote the chosen assignment. (Setup: SNR [0.0,16.0] dB; CFO 0.0010; IQ 0.3 dB / 2.0°; MP taps 3 decay 0.55; runs 5; strategy <code>auto.</code>)

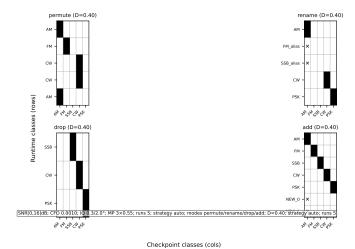


Fig. 4. Alignment matrices for all four divergence modes at a fixed D. Each panel: runtime rows \times checkpoint cols; grayscale weights with x-marks on assignments. (Setup: SNR [0.0,16.0] dB; CFO 0.0010; IQ 0.3 dB / 2.0° ; MP taps 3 decay 0.55; runs 5; strategy auto.)